The recent experimental proposals by Bose et al. and Marletto et al. (BMV) outline a way to test for the quantum nature of gravity by measuring gravitationally induced differential phase accumulation over the superposed paths of two ~ 10−14 kg masses. These authors outline the expected outcome of these experiments for semi-classical, quantum gravity and collapse models. It is found that both semi-classical and collapse models predict a lack of entanglement in the experimental results. This work predicts the outcome of the BMV experiment in Bohmian trajectory gravity – where classical gravity is assumed to couple to the particle configuration in each Bohmian path, as opposed to semi-classical gravity where gravity couples to the expectation value of the wave function, or of quantized gravity, where the gravitational field is itself in a quantum superposition. In the case of the BMV experiment, Bohmian trajectory gravity predicts that there will be quantum entanglement. This is surprising as the gravitational field is treated classically. A discussion of how Bohmian trajectory gravity can induce quantum entanglement for a non superposed gravitational field is put forward.

Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information

This paper explores an event-based version of quantum mechanics which differs from the commonly accepted one, even though the usual elements of quantum formalism, e.g., the Hilbert space, are maintained. This version introduces as primary element the occurrence of micro-events induced by usual physical (mechanical, electromagnetic and so on) interactions. These micro-events correspond to state reductions and are identified with quantum jumps, already introduced by Bohr in his atomic model and experimentally well established today. Macroscopic bodies are defined as clusters of jumps; the emergence of classicality thus becomes understandable and time honoured paradoxes can be solved. In particular, we discuss the cat paradox in this context. Quantum jumps are described as temporal localizations of physical quantities; if the information associated with these localizations has to be finite, two time scales spontaneously appear: an upper cosmological scale and a lower scale of elementary “particles”. This allows the interpretation of the Bekenstein limit like a particular informational constraint on the manifestation of a micro-event in the cosmos it belongs. The topic appears relevant in relation to recent discussions on possible spatiotemporal constraints on quantum computing. View Full-Text

It is shown that, for a de Sitter Universe, the Hartle-Hawking (HH) wave function can be obtained in a simple way starting from the Friedmann-Lemaitre-Robertson-Walker (FLRW) line element of cosmological equations. An oscillator having imaginary time is indeed derived starting from the Hamiltonian obtaining the HH condition. This proposes again some crucial matter on the meaning of complex time in cosmology. In order to overcome such difficulties, we propose an interpretation of the HH framework based on de Sitter Projective Holography.