from philsciSun Mar 24 2024 01:37:01 (6 days)# 10.
Wallace, David (2024) Learning to Represent: Mathematics-first accounts of representation and their relation to natural language. [Preprint]
from gr-qc by Jonathan SorceFri Mar 29 2024 17:22:32 (1 day)# 1.
arXiv:2403.18937v1 Announce Type: cross Abstract: The Unruh effect can be formulated as the statement that the Minkowski vacuum in a Rindler wedge has a boost as its modular flow. In recent years, other examples of states with geometrically local modular flow have played important roles in understanding energy and entropy in quantum field theory and quantum gravity. Here I initiate a general study of the settings in which geometric modular flow can arise, showing (i) that any geometric modular flow must be a conformal symmetry of the background spacetime, and (ii) that in a well behaved class of “weakly analytic” states, geometric modular flow must be future-directed. I further argue that if a geometric transformation is conformal but not isometric, then it can only be realized as modular flow in a conformal field theory. Finally, I discuss a few settings in which converse results can be shown — i.e., settings in which a state can be constructed whose modular flow reproduces a given vector field.
from gr-qc by J. J. Relancio, L. Santamar\’ia-SanzFri Mar 29 2024 17:22:27 (1 day)# 2.
arXiv:2403.19520v1 Announce Type: cross Abstract: In this work, we present the technical details of the discussion presented in [J.J. Relancio, L.Santamar\’ia-Sanz (2024) arXiv:2403.18772], where we establish the basis of quantum theories of the free massive scalar, the massive fermionic, and the electromagnetic fields, in a doubly special relativity scenario. This construction is based on a geometrical interpretation of the kinematics of these kind of theories. In order to describe the modified actions, we find that a higher (indeed infinite) derivative field theory is needed, from which the deformed kinematics can be read. From our construction we are able to restrict the possible models of doubly special relativity to particular bases that preserve linear Lorentz invariance. We quantize the theories and also obtain a deformed version of the Maxwell equations. We analyze the electromagnetic vector potential either for an electric point-like source and a magnetic dipole. We observe that the electric and magnetic fields do not diverge at the origin for some models described with an anti de Sitter space but do for the de Sitter one in both problems.
from philsciWed Mar 27 2024 11:28:52 (3 days)# 3.
March, Eleanor (2024) Are Maxwell gravitation and Newton-Cartan theory theoretically equivalent? [Preprint]
from philsciWed Mar 27 2024 11:21:57 (3 days)# 4.
Slowik, Edward (2024) Emergent Spatial Ontologies in the Early Modern Period. In: UNSPECIFIED.
from physics.hist-ph by M. ShifmanWed Mar 27 2024 10:20:25 (3 days)# 5.
arXiv:2401.11027v2 Announce Type: replace Abstract: The first Edition of this book was released in 2000, just before the symposium “Thirty Years of Supersymmetry” was held at the William I. Fine Theoretical Physics Institute (FTPI) of the University of Minnesota. Founders and trailblazers of supersymmetry descended on FTPI, as well as a large crowd of younger theorists deeply involved in research in this area. Since then 23 years have elapsed and significant changes happened in supersymmetry (SUSY). Its history definitely needs an update. Such an update is presented below. The Second Edition of the revised collection will be released in 2024.
from physics.hist-ph by Jonte R. Hance, Sabine HossenfelderTue Mar 26 2024 09:00:19 (4 days)# 6.
arXiv:2204.01768v3 Announce Type: replace-cross Abstract: It was recently argued by Catani et al that it is possible to reproduce the phenomenology of quantum interference classically, by the double-slit experiment with a deterministic, local, and classical model (Quantum 7, 1119 (2023)). The stated aim of their argument is to falsify the claim made by Feynman (in his third book of Lectures on Physics) that quantum interference is “impossible, absolutely impossible, to explain in any classical way” and that it “contains the only mystery” of quantum mechanics. We here want to point out some problems with their argument.
from nature-physics by R. Abbasi; M. Ackermann; J. Adams; S. K. Agarwalla; J. A. Aguilar; M. Ahlers; J. M. Alameddine; N. M. Amin; K. Andeen; G. Anton; C. Argüelles; Y. Ashida; S. Athanasiadou; L. Ausborm; S. N. Axani; X. Bai; A. Balagopal V; M. Baricevic; S. W. Barwick; V. Basu; R. Bay; J. J. Beatty; J. Becker Tjus; J. Beise; C. Bellenghi; C. Benning; S. BenZvi; D. Berley; E. Bernardini; D. Z. Besson; E. Blaufuss; S. Blot; F. Bontempo; J. Y. Book; C. Boscolo Meneguolo; S. Böser; O. Botner; J. Böttcher; J. Braun; B. Brinson; J. Brostean-Kaiser; L. Brusa; R. T. Burley; R. S. Busse; D. Butterfield; M. A. Campana; K. Carloni; E. G. Carnie-Bronca; S. Chattopadhyay; N. Chau; C. Chen; Z. Chen; D. Chirkin; S. Choi; B. A. Clark; A. Coleman; G. H. Collin; A. Connolly; J. M. Conrad; P. Coppin; P. Correa; D. F. Cowen; P. Dave; C. De Clercq; J. J. DeLaunay; D. Delgado; S. Deng; K. Deoskar; A. Desai; P. Desiati; K. D. de Vries; G. de Wasseige; T. DeYoung; A. Diaz; J. C. Díaz-Vélez; M. Dittmer; A. Domi; H. Dujmovic; M. A. DuVernois; T. Ehrhardt; A. Eimer; P. Eller; E. Ellinger; S. El Mentawi; D. Elsässer; R. Engel; H. Erpenbeck; J. Evans; P. A. Evenson; K. L. Fan; K. Fang; K. Farrag; A. R. Fazely; A. Fedynitch; N. Feigl; S. Fiedlschuster; C. Finley; L. Fischer; D. Fox; A. Franckowiak; P. Fürst; J. Gallagher; E. Ganster; A. Garcia; L. Gerhardt; A. Ghadimi; C. Glaser; T. Glüsenkamp; J. G. Gonzalez; D. Grant; S. J. Gray; O. Gries; S. Griffin; S. Griswold; K. M. Groth; C. Günther; P. Gutjahr; C. Ha; C. Haack; A. Hallgren; R. Halliday; L. Halve; F. Halzen; H. Hamdaoui; M. Ha Minh; M. Handt; K. Hanson; J. Hardin; A. A. Harnisch; P. Hatch; A. Haungs; J. Häußler; K. Helbing; J. Hellrung; J. Hermannsgabner; L. Heuermann; N. Heyer; S. Hickford; A. Hidvegi; C. Hill; G. C. Hill; K. D. Hoffman; S. Hori; K. Hoshina; W. Hou; T. Huber; K. Hultqvist; M. Hünnefeld; R. Hussain; K. Hymon; S. In; A. Ishihara; M. Jacquart; O. Janik; M. Jansson; G. S. Japaridze; M. Jeong; M. Jin; B. J. P. Jones; N. Kamp; D. Kang; W. Kang; X. Kang; A. Kappes; D. Kappesser; L. Kardum; T. Karg; M. Karl; A. Karle; A. Katil; U. Katz; M. Kauer; J. L. Kelley; A. Khatee Zathul; A. Kheirandish; J. Kiryluk; S. R. Klein; A. Kochocki; R. Koirala; H. Kolanoski; T. Kontrimas; L. Köpke; C. Kopper; D. J. Koskinen; P. Koundal; M. Kovacevich; M. Kowalski; T. Kozynets; J. Krishnamoorthi; K. Kruiswijk; E. Krupczak; A. Kumar; E. Kun; N. Kurahashi; N. Lad; C. Lagunas Gualda; M. Lamoureux; M. J. Larson; S. Latseva; F. Lauber; J. P. Lazar; J. W. Lee; K. Leonard DeHolton; A. Leszczyńska; M. Lincetto; Y. Liu; M. Liubarska; E. Lohfink; C. Love; C. J. Lozano Mariscal; L. Lu; F. Lucarelli; W. Luszczak; Y. Lyu; J. Madsen; E. Magnus; K. B. M. Mahn; Y. Makino; E. Manao; S. Mancina; W. Marie Sainte; I. C. Mariş; S. Marka; Z. Marka; M. Marsee; I. Martinez-Soler; R. Maruyama; F. Mayhew; T. McElroy; F. McNally; J. V. Mead; K. Meagher; S. Mechbal; A. Medina; M. Meier; Y. Merckx; L. Merten; J. Micallef; J. Mitchell; T. Montaruli; R. W. Moore; Y. Morii; R. Morse; M. Moulai; T. Mukherjee; R. Naab; R. Nagai; M. Nakos; U. Naumann; J. Necker; A. Negi; M. Neumann; H. Niederhausen; M. U. Nisa; A. Noell; A. Novikov; S. C. Nowicki; A. Obertacke Pollmann; V. O’Dell; B. Oeyen; A. Olivas; R. Orsoe; J. Osborn; E. O’Sullivan; H. Pandya; N. Park; G. K. Parker; E. N. Paudel; L. Paul; C. Pérez de los Heros; T. Pernice; J. Peterson; S. Philippen; A. Pizzuto; M. Plum; A. Pontén; Y. Popovych; M. Prado Rodriguez; B. Pries; R. Procter-Murphy; G. T. Przybylski; C. Raab; J. Rack-Helleis; K. Rawlins; Z. Rechav; A. Rehman; P. Reichherzer; E. Resconi; S. Reusch; W. Rhode; B. Riedel; A. Rifaie; E. J. Roberts; S. Robertson; S. Rodan; G. Roellinghoff; M. Rongen; A. Rosted; C. Rott; T. Ruhe; L. Ruohan; D. Ryckbosch; I. Safa; J. Saffer; D. Salazar-Gallegos; P. Sampathkumar; S. E. Sanchez Herrera; A. Sandrock; M. Santander; S. Sarkar; S. Sarkar; J. Savelberg; P. Savina; M. Schaufel; H. Schieler; S. Schindler; L. Schlickmann; B. Schlüter; F. Schlüter; N. Schmeisser; T. Schmidt; J. Schneider; F. G. Schröder; L. Schumacher; S. Sclafani; D. Seckel; M. Seikh; S. Seunarine; R. Shah; S. Shefali; N. Shimizu; M. Silva; B. Skrzypek; B. Smithers; R. Snihur; J. Soedingrekso; A. Søgaard; D. Soldin; P. Soldin; G. Sommani; C. Spannfellner; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; T. Stezelberger; T. Stürwald; T. Stuttard; G. W. Sullivan; I. Taboada; S. Ter-Antonyan; A. Terliuk; M. Thiesmeyer; W. G. Thompson; J. Thwaites; S. Tilav; K. Tollefson; C. Tönnis; S. Toscano; D. Tosi; A. Trettin; C. F. Tung; R. Turcotte; J. P. Twagirayezu; M. A. Unland Elorrieta; A. K. Upadhyay; K. Upshaw; A. Vaidyanathan; N. Valtonen-Mattila; J. Vandenbroucke; N. van Eijndhoven; D. Vannerom; J. van Santen; J. Vara; J. Veitch-Michaelis; M. Venugopal; M. Vereecken; S. Verpoest; D. Veske; A. Vijai; C. Walck; Y. Wang; C. Weaver; P. Weigel; A. Weindl; J. Weldert; A. Y. Wen; C. Wendt; J. Werthebach; M. Weyrauch; N. Whitehorn; C. H. Wiebusch; D. R. Williams; L. Witthaus; A. Wolf; M. Wolf; G. Wrede; X. W. Xu; J. P. Yanez; E. Yildizci; S. Yoshida; R. Young; S. Yu; T. Yuan; Z. Zhang; P. Zhelnin; P. Zilberman; M. ZimmermanMon Mar 25 2024 20:00:00 (4 days)# 7.
Nature Physics, Published online: 26 March 2024; doi:10.1038/s41567-024-02436-wInteractions of atmospheric neutrinos with quantum-gravity-induced fluctuations of the metric of spacetime would lead to decoherence. The IceCube Collaboration constrains such interactions with atmospheric neutrinos.
from PRA – fundamentalconcepts by Gabriel H. S. Aguiar and George E. A. MatsasMon Mar 25 2024 06:00:00 (5 days)# 8.
Author(s): Gabriel H. S. Aguiar and George E. A. Matsas
Explaining the behavior of macroscopic objects from the point of view of the quantum paradigm has challenged the scientific community for the past century. A mechanism of gravitational self-interaction, governed by the so-called Schrödinger-Newton equation, is among the proposals that aim to shed so…
[Phys. Rev. A 109, 032223] Published Mon Mar 25, 2024
from philsciSun Mar 24 2024 01:38:19 (6 days)# 9.
Riedel, Timotheus (2023) Relational Quantum Mechanics, quantum relativism, and the iteration of relativity. [Preprint]