I would like to begin with Bell’s remark on the possibility that the beables are non-local, which Tim Maudlin quotes.
“Of course, we may be obliged to develop theories in which there are no strictly local beables. That possibility will not be considered here[1].”
When I read that yesterday I was astounded because it made me realize that ever since encountering Bell’s theorem as a first year undergraduate I have assumed that there are non-local beables; indeed most of my work in quantum foundations has been a search for them.
The model I have sketched shows that quantum mechanics can be recovered from an explicit hidden variables model whose beables are non-local. This is in accord with the reasons I stressed that the beables of quantum theory should be taken as non-local. I would thus propose that the ultimate legacy of Bell’s fundamental work will be the discovery that quantum theory is a description of an a-local world, which we happen to see in a phase where space has emerged. When we try to describe the physics of local subsystems of the universe, delineated by the emergent and approximate concept of locality, we are forced to neglect interactions which are really there between the subsystem’s microscopic degrees of freedom and other degrees of freedom now emerged in distant parts of the universe. These non-local interactions are mediated by relational degrees of freedom that are non-local, in the sense that they are shared between subsystems that are distant from each other in the emergent concept of locality.
Because of the neglect of these non-local degrees of freedom, the quantum physics of local subsystems is stochastic and subject to a persistent and universal Brownian motion, which is the cheshire cat smile of the fundamental a-locality of the world. In this sense, hbar is a measure of the resistance of the world to a local description.
This paper has been sent out to peer review.
Report from Referee A has been received.