Reply To: Why Bohmian theory?


Bob, can you give a simple concrete example of the kind of thing you have in mind when you say that BM sometimes “gives the wrong answers” and/or fails to make correct predictions for certain (two-time) correlations? I’m pretty sure you are forgetting that what we actually have direct access to, empirically, are “pointer positions” and such things. So for example if there is some particle (in the 2-slit experiment or something) and BM tells us its position x(t), you might think the theory gives “wrong answers” for (e.g.) the correlation between where it is at t_1 (say, when it’s going through one slit or the other) and where it is at t_2 (way, when it’s hitting the detection screen). But if you want to analyze this kind of situation and compare to empirically measured correlations, you must include the measuring equipment and the effects of that measuring equipment on the particle. In particular, for example, the distribution of particle positions at t_2 will be different if you say that, at t_1, a position measurement was made (in which the position of some macroscopic pointer was arranged to become correlated with whether the particle in question went through the top slit or the bottom slit). I’m pretty sure you are just forgetting/ignoring this, if you think that there is something “wrong” with BM’s predictions for 2-time correlations. (Reinhard has also tried to make this same criticism of BM.)

Anyway, maybe that’s already enough to help you appreciate why actually the theory’s predictions are not at all wrong. If not, if you can give a concrete example of what you have in mind, I think it would be fruitful to talk through in detail.

Comments are closed, but trackbacks and pingbacks are open.