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Abstract: We present a set of exact system solutions to a model we developed
to study wave function collapse in the quantum spin measurement process.
Specifically, we calculated the wave function evolution for a simple harmonic
oscillator of spin 1

2 , with its magnetic moment in interaction with a magnetic
field, coupled to an environment that is a bath of harmonic oscillators. The
system’s time evolution is described by the direct product of two independent
Hilbert spaces: one that is defined by an effective Hamiltonian, which
represents a damped simple harmonic oscillator with its potential well divided
into two, based on the spin and the other that represents the effect of the bath,
i.e., the Brownian motion. The initial states of this set of wave functions form
an orthonormal basis, defined as the eigenstates of the system. If the system
is initially in one of these states, the final result is predetermined, i.e., the
measurement is deterministic. If the bath is initially in the ground state,and
the wave function is initially a wave packet at the origin, it collapses into one
of the two potential wells depending on the initial spin. If the initial spin
is a vector in the Bloch sphere not parallel to the magnetic field, the final
distribution among the two potential wells is given by the Born rule applied to
the initial spin state with the well-known ground state width. Hence, the result
is also predetermined. We discuss its implications to the Bell theorem[1]. We
end with a summary of the implications for the understanding of the statistical
interpretation of quantum mechanics.
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1. Introduction

The quantum measurement problem is related to the foundations of quantum mechanics.
In particular, the collapse of the wave function during quantum measurement is crucial to
the understanding of quantum mechanics. ”The inability to observe such a collapse directly
has given rise to different interpretations of quantum mechanics”[2]. We have chosen to use
a model for the quantum measurement process to clarify the collapse of the wave function.

To study the collapse of the wave function, we are interested in the simplest example of
a dissipative system. Such a system, i.e., a harmonic oscillator coupled to an environment,
which is a bath of harmonic oscillators, has been the subject of extensive studies [3–19].
A special case of this system, the Ohmic case discussed by Caldeira and Leggett (to be
defined later), is exactly solved using the path-integral with the density matrix diagonalized
in [3–5], which indicates a wave function collapse. Following these works, we solved the
wave function evolution directly in this special case as the solution of the Schrӧdinger
equation[20], where even though we did not focus on the description of the wave function
collapse, it is obvious in the solution.

In this paper, for the Ohmic case of the system, we shall focus on the wave function
collapse and introduce spin 1

2 into the simple harmonic oscillator, with its magnetic moment
interacting with a magnetic field aligned to the axis of the oscillation in a direction z. The
bath of harmonic oscillators serves as a model of a detector. The potential well of the
simple harmonic oscillator is split into two potential wells according to whether the spin is
in +z or −z direction. Thus, this models a spin measurement process.

We consider the problem the same as discussed by Caldeira and Leggett (CL) [3] and
[20], except that in this case the main oscillator has spin: a harmonic-oscillator system (the
dissipative system) with coordinate q on z axis, mass M , and frequency (ω2

0 + ∆ω2)
1
2

, interacting with a bath of N harmonic oscillators of coordinates xj , mass mj , and
frequency ωj , where ∆ω2 is a shift induced by the coupling already discussed by CL.
The Hamiltonian of the system and the bath is

H =
p2

2M
+

1

2
M(ω2

0 + ∆ω2)q2 −MBσzq + q

N∑
j=1

cjxj +

N∑
j=1

(
p2j

2mj
+

1

2
mjω

2
jx

2
j

)

σz |+〉 = |+〉 =

(
1

0

)
, σz |−〉 = − |−〉 = −

(
0

1

)
, ψ =

(
ψ+(q)

ψ−(q)

)

The interaction of the spin 1
2σ dipole moment with the magnetic field contributes to the

term −MBσzq, where z is the projection of the Pauli matrix σ on z and ψ is the main
oscillator’s wave function. The simple harmonic oscillator’s potential well is divided into
two potential wells based on the spin.
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Here, we outline the solution to this problem with examples and a possible
interpretation:

In Section 1, despite the addition of the new term−MBσzq to the previous Hamiltonian
in [20], we show that this system can be solved almost exactly the same way. The system’s
time evolution is described by the direct product of two independent Hilbert spaces. One of
them is defined by an effective Hamiltonian, which represents a damped simple harmonic
oscillator with two split potential wells due to spin, and the other represents the effect of
the bath, i.e., the Brownian motion.

We present a set of exact solutions of the system that all collapse to a δ-function centered
at a specified position and time depending on whether the spin eigenstate is parallel or
opposite to the magnetic field, with a small displacement determined by the eigenstates of
each bath oscillators. The initial states of this set of wave functions form an orthonormal
basis in the Hilbert space of the system, which is defined as the “eigenstates of the system.”
Hence, if the system is initially in one of these states, the final result is predetermined, i.e.,
the measurement is deterministic.

In Section 2, if the system is initially a superposition of these states, the final distribution
is a superposition of δ-functions for a sufficiently long time after the damping time.
Each has a probability amplitude determined by the corresponding eigenstate’s probability
amplitude in the initial state at time t = 0 , with the center position determined by
the spin eigenstate of the main oscillator and the contribution from each bath oscillator
xj . Once the distribution is determined from the initial state by the Born rule, the final
distribution is also predetermined. As a result, we only need to apply quantum mechanics’
statistical interpretation to the initial state; the final distribution is already determined by
the Schrӧdinger equation.

One of the examples we shall discuss is the special case where the initial states of the
bath oscillators are in their ground states at absolute temperature zero. In this case, the
initial state of the bath is not an “eigenstate of the system,” as we defined it above, but a
superposition of the “eigenstates of the system,” even though it is in the ground state (we
remark here that the system is initially not in equilibrium even though the bath is in the
ground state). The main harmonic oscillator is assumed to be initially a wave packet at the
origin, i.e., in the middle between the two split potential wells. If the initial spin state is
one of the two eigenstates of the main oscillator, for example, |+〉, the final state would be
at the bottom of one of the two potential wells, that is, the one with z > 0, with a narrow
spread due to the contributions from the bath oscillators which is the Brownian width. We
find the width approximately agrees with the well-known width of the ground state for the
simple harmonic oscillator if the damping time is much longer than its period.

In Section 3, we discuss another example where the initial spin state is a vector in the
Bloch sphere not parallel to the magnetic field, i.e., it is the eigenstate of σθ where θ is the
angle between the vector and the z direction. In this case, even though the initial state is



International Journal of Quantum Foundations 10 (2024) 4

a pure state, it is not the eigenstate of the system; it is a superposition of two eigenstates
of the system. This state is not an eigenstate of the spin measurement of σz because the
magnetic field is not in the θ direction. The probability of the two eigenstates is given by
the Born rule applied to the initial state, i.e., cos2( θ2) for z > 0, sin2( θ2) for z < 0, in spite
of the initial state being a pure state. We shall demonstrate that the final distribution has
two distinct peaks at the centers of the two potential wells accordingly, as shown in Fig.1.
Again, the final result is determined by the Schrӧdinger equation according to the initial
probability distribution.

If the bath temperature is not zero, the system is in a mixed state specified by a density
matrix ρ according to the Boltzmann distribution. Still, we found the result is similarly
determined by initial distribution.

In Section 4, we summarize the result and its implications in the Bell theorem. Because
the discussion is only for a specific model, the interpretation is only suggestive. Applying
the results of Sections 1, 2, and 3, we establish that the analysis of two separate spin
measurements σ1 � ~a and σ2 �~b at remote positions A and B on two entangled particles in
the Bell theorem is equivalent to the analysis of two measurements −σ2 � ~a and σ2 � ~b at
time t = 0 on particle 2 at the origin.

Because σ2 � ~a and σ2 �~b at time t = 0 do not form a set of commuting observables, if
σ2 �~a is definite, then σ2 �~b is uncertain. Hence the probability distribution is a consequence
of the uncertainty principle. So long as the uncertainty principle is valid, there is no hidden
variable theory to have a definite value for σ2 �~a and σ2 �~b simultaneously. Therefore, there
is no need to resort to “local hidden variable theory” as J. Bell did to prove Bell inequality.
As a result, there is no “nonlocality” involved in the violation of Bell inequality when the
quantum mechanics prediction is confirmed. Because the result is predetermined by the
initial condition, the final distance of the two entangled particles in the experiment in the
Bell theorem does not affect the probability distribution as long as their spin correlation
is not destroyed by the environment before detection. Thus, the experiment’s agreement
with quantum mechanics does not provide information related to non-locality. This result
suggests a viewpoint that may aid in understanding the interpretation of Bell’s theorem.
This result also implies that the Born rule at the end of the measurement can be derived
from the Schrӧdinger equation as long as the Born rule is applied to the interpretation of
the initial state.

Finally, Section 5 gives a summary of the implications for the understanding of the
statistical interpretation of quantum mechanics.

2. Solution of a damped simple harmonic oscillator with spin in a bath

The dynamic equation for operators in the Heisenberg representation leads to the
following set of equations of motion:
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Mq̈ = −Mω2
0q −M∆ω2q +MBσz −

∑
j

cjxj (1)

mj ẍj = −mjω
2
jxj − cjq (j = 1, 2, ..., N)

Now, applying the Laplace transform [5] (the bars are our notations for the Laplace
transform, and s is the Laplace transform of time t), Eqs. (1) can be used to eliminate the
bath variables xj to obtain the equation for q,

M(s2q − sq0 − q̇0) = −Mω2
0q −M∆ω2q +MBσz

1

s
−
∑
j

cj
sxj0 + ẋj0
s2 + ω2

j

+
∑
j

c2j
mj(s2 + ω2

j )
q

(2)

where q0, q̇0 , xj0, ẋj0 are the initial values of the respective operators in the Heisenberg
representation. Assuming the number of bath oscillators is large enough so that we can
replace the sum over j by integration over ωj , the coefficient of the last term can then be
separated into two terms:

∫ ωcufoff

0

c2j
mj

ρ(ωj)

ω2
j

dωj − s2
∫ ωcufoff

0

c2j
mj

ρ(ωj)

ω2
j

1

(s2 + ω2
j )
dωj (3)

where ρ(ωj) is the bath oscillator density, with an upper-frequency limit ωcufoff.
Following an argument similar to the one pointed out by CL [3], the requirement that
the system becomes a damped oscillator with frequency ω0 and a damping rate η in the
classical limit, known as the "Ohmic friction" condition, leads to the following constraint:

ρ(ωj) =
2ηM

π

mjω
2
j

c2j
(4)

If the frequency renormalization constant ∆ω2 is chosen to satisfy

M∆ω2 =

∫ ωcufoff

0

c2j
mj

ρ(ωj)

ω2
j

dωj =
2ηM

π
ωcufoff

Then by observing Eqs.(3,4), it can be shown that for sufficiently large ωcufoff � ω0, the
first term of Eq.(3) represents a frequency shift 2ηM

π ωcufoff, while the second term of Eq.(3)
leads to a damping term −ηMsq, with the damping constant η.

The frequency is shifted to ω0. Then Eq.(2) is simplified, and its inverse Laplace
transform yields the quantum Langevin equation, which is valid at time t > 0+:

q̈(t) + ηq̇(t) + ω2
0q(t) = f(t) (5)
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with a constant magnetic force Bσz and the Brownian motion driving force

f(t) = Bσz −
∑
j

cj
M

(
xj0 cos(ωjt) + ẋj0

sin(ωjt)

ωj

)
(6)

During the derivation, in order to carry out the integral in Eq.(2), we used the
requirement of the inverse Laplace transform that s must pass all the singular points from
the right side of the complex plane, and hence Re(s) > 0. Equations (5) and (6) are the
equations of a driven damped harmonic oscillator with an external force, the solution of
which is well known as a linear combination of the initial values at q0 − σzd, q̇0 , xj0, ẋj0
and a displacement σzd, where d ≡ B

ω2
0

:

q(t) = a1(t) (q0 − σzd) + a2(t)q̇0 + σzd+
∑
j

(xj0bj1(t) + ẋj0bj2(t)) (7)

xi(t) = αi1(t) (q0 − σzd) + αi0(t)σzd+ αi2(t)q̇0 +
∑
j

(xj0βij1(t) + ẋj0βij2(t))

with a1(t) = µe−νt−νe−µt
µ−ν , a2(t) = − e−µt−e−νt

µ−ν , µ ≡ η
2 + ωi, ν ≡ η

2 − ωi and

here ω ≡
(
ω2
0 −

η2

4

)1/2
is the frequency shifted by damping. And a1(0) = 1, a2(0) =

0, ȧ1(0) = 0, ȧ2(0) = 1, (see Appendix I for a1(t), a2(t), bj1(t), bj2(t), etc). All
formulas are correct whether ω is real or imaginary. We have redefined the initial time
as t = 0+ to avoid a minor detail of the initial-value problem. The explicit expressions for
αi0(t), αi1(t), αi2(t), βij1(t), βij2(t) are well known in basic physics.

We emphasize that the use of the Laplace transform instead of the Fourier transform
allows us to express q(t) and xj(t) explicitly in terms of the initial values, as in Eqs. (7).
Equations (7) serve as the starting point of subsequent discussions. We will proceed to
find the Green’s function of the full system, and hence the solution of the wave function
in the Schrӧdinger representation. The result tells us in what sense the damped oscillator
is described by an effective Hamiltonian without the bath variables and gives it a specific
form. It also shows that under this condition, the wave function can be factorized, and that
the main factor relevant to the damped oscillator is a solution of the Schrӧdinger equation
with an effective Hamiltonian.

Equations (7) are correct both in classical mechanics and in quantum mechanics in the
Heisenberg representation. We notice that q(t) and xj(t) are both linear superpositions of
q0 − σzd, q̇0 , xj0, ẋj0, σzd with c-number coefficients. The commutation rules between
q(t), q̇(t), xj(t), ẋj(t) are [q(t), q̇(t)] = i~

M , [xj(t), ẋj(t)] = i~
mj

, and operators q(t) and
q̇(t) commute with xj(t), ẋj(t). One can prove these commutation rules in two ways: (1)
by direct computation, using the fact that at t = 0, they are correct, and they all commute
with operator σz and (2) by the general principle that q(t), q̇(t), xj(t), ẋj(t) are related by
a unitary transformation to q0, q̇0, σz, xj0, ẋj0.
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Equations (7) show that the operators q(t) and xj(t) can each be written as a sum of
two terms:

q(t) = (Q(t) + σzd) +
∑
j

ξj(t) (8)

xi(t) = ζj(t) +
∑
j

Xij(t)

where

Q(t) = a1(t) (q0 − σzd) + a2(t)q̇0 = a1(t)Q0 + a2(t)Q̇0 (9)

ξj(t) = xj0bj1(t) + ẋj0bj2(t)

(Q(t) + σzd) and ζ(t) are linear in q0, q̇0, and σz and independent of xj0, ẋj0, and ξj(t)
and Xij(t) are linear in xj0, ẋj0, and independent of q0, q̇0, and σz . Thus Q(t), σzd and
ζ(t) are operators in one Hilbert space SQ, while ξj(t) and Xij(t) are in an independent
Hilbert space SX , and the full Hilbert space is a direct product of SQ ⊗ SX .

We shall first analyze the structure of SQ. To explicitly show that we are discussing the
SQ space, we define Q0 ≡ q0 − σzd, Q̇0 ≡ q̇0 = − i~

M
∂
∂q0

. Because σzd is a constant
operator and it commutes with q0 and q̇0, we have [Q0, Q̇0] = [q0, q̇0] = i~

M . Thus, we can
write − i~

M
∂
∂Q0
≡ Q̇0 = q̇0 as a well-defined operator in the space of q0, σz , i.e., SQ. The

eigenfunction ofQ(t) with an eigenvalue denoted byQ1, in theQ0 representation, is easily
calculated to be (see Appendix II),

uQ1(Q0, t) =

(
Mωe

η
2
t

2π~ sin(ωt)

) 1
2

exp

[
−i M

2~a2
(
a1Q

2
0 − 2Q1Q0 + φ(Q1, t)

)]
(10)

with φ as an arbitrary phase, i.e., a real number. This eigenfunction is related to Green’s
function

G(Q1, Q0; t, 0) =< Q1|U(t)|Q0 >,

where we denote the evolution operator byU(t). To see this, we use the relation between
Schrӧdinger operator QS and Heisenberg operator Q(t) ≡ QH(t) = U−1(t)QSU(t).

Let |Q1 > be the eigenvector of QS with eigenvalue Q1, i.e.,

QS |Q1 >= Q1|Q1 >

we see that U−1|Q1 > is the eigenvector of Q(t) of value Q1
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Q(t)U−1|Q1 >= QHU
−1|Q1 >= U−1QSUU

−1|Q1 >= U−1QS |Q1 >= Q1U
−1|Q1 >

So U−1|Q1 > is proportional to uQ1(Q0, t). If we choose uQ1(Q0, t) as an orthonormal
basis, then U is unitary: U † = U−1.

Then, we have uQ1(Q0, t) =< Q0|U−1|Q1 >=< Q0|U †|Q1 >=< Q1|U(t)|Q0 >
∗=

G∗(Q1, Q0; t, 0), i.e., G(Q1, Q0; t, 0) = u∗Q1
(Q0, t). Thus we have

G(Q1, Q0; t, 0) =

(
Mωe

η
2
t

2π~ sin(ωt)

) 1
2

exp

[
i
M

2~a2
(
a1Q

2
0 − 2Q1Q0 + φ(Q1, t)

)]
(11)

Next, we shall determine the arbitrary phase φ(Q1, t) , which is the phase of the
eigenvectors of Q(t). Using Eq.(9), we find the commutation rule for Q and Q̇ (see
Appendix I):

[Q, Q̇] = (a1(t)ȧ2(t)− ȧ1(t)a2(t)) [Q0, Q̇0] = e−ηt[Q0, Q̇0] = e−ηt
i~
M

Thus, we define the canonical momentum P (t) as

P = MeηtQ̇ = Meηt
(
ȧ1(t)Q0 + ȧ2(t)Q̇0

)
= Meηtȧ1(t)Q0 − i~eηtȧ2(t)

∂

∂Q0
(12)

and get the commutation rule [Q(t), P (t)] = i~. The eigenfunction of P (t) can
be calculated in two ways: (1) we can calculate the eigenvector of P (t) in the Q0

representation using Eq.(12) and then use Green’s function Eq.(11) to transform it into the
Q(t) representation and (2) the commutation rule [Q(t), P (t)] = i~ requires that P (t) =

−i~ ∂
∂Q , so the eigenfunction of P (t) with eigenvalue P1 is exp[iP1

~ Q]. By comparing these
two solutions, the arbitrary phase φ(Q1, t) in Green’s function is determined to be within a
phase φ(t) , which is independent of Q1. φ(t) is an arbitrary real function of time, except
that φ(0) = 0 so that it satisfies the condition that at t = 0 , the Green’s function becomes
δ(Q1 −Q0). Thus, we obtain Green’s function in the SQ space:

G(Q1, Q0; t, 0) =

(
Mωe

η
2
t

2πi~ sin(ωt)

) 1
2

exp

[
i
M

2~a2
(
a1Q

2
0 − 2Q1Q0 + eηtȧ2Q

2
1

)
− i

~
φ(t)

]
(13)

It is then straightforward to derive the Hamiltonian HQ using the following relation:

HQ = i~
(
∂

∂t
UQ

)
U−1Q
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and remember that the matrix elements of UQ and U−1Q are Green’s function and its
conjugate. The result is

HQ = e−ηt
P 2

2M
+

1

2
Meηtω2

0Q
2 + φ̇(t) (14)

Since φ is arbitrary except that φ((0) = 0, we can take φ(t) = 0. Therefore, we have
derived the well-known effective Hamiltonian for the dissipative system. We emphasize
that the expression for HQ is derived here, whereas it is usually introduced by heuristic
arguments.

Next, we shall analyze the effect of the bath. Similar to Eq.(9), we define the
contribution of the bath oscillator j to the Brownian motion of the main oscillator as

ξj(t) ≡ xj0bj1(t) + ẋj0bj2(t)

where bj1(t), bj1(t), ḃj1(t), ḃj1(t) all equal to zero at t = 0 (see Appendix I), so ξj(t =

0) = 0 and ξ̇j(t = 0) = 0, and hence in Eq.(8), q(0) = q0, q̇(0) = q̇0.
Similar to Eq.(10) we obtain the eigenfunctions θξj1(xj0, t) for ξj and t > 0. Using

Dirac’s notation we have

Q|uQ1 , s〉 = Q1|uQ1 , s〉

ξj |θξj1〉 = ξj1 |θξj1〉,

where s = ±1 is the eigenvalue of σz:

σz|s >= s|s >,

and

|uQ, s〉 ≡ uQ(Q0, t)|s > .

Thus |uQ, s〉
∏
j ⊗|θξj 〉 is an eigenvector of q(t), with eigenvalue of q = Q+sd+

∑
j ξj .

Hence Q = q − sd−
∑

j ξj . In other words, the eigenvector of q(t) with eigenvalue q is

|q, s, {ξj}〉 = |uq−sd−∑j ξj
, s〉
∏
j

⊗|θξj1〉 (15)

The set of Hermitian q, s, {ξj} is a set of commuting observables distinct from the set
of q, s, {xj}. The set of wave functions |q, s, {ξj}〉 forms a Hilbert space’s orthonormal
basis.

We first study the evolution of the damped simple harmonic oscillator wave function.
Initially (t = 0) it is uQ1(Q0, t). Then, at time t, according to the discussion following
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Eq.(10) , G(Q1, Q0; t, 0) ≡ 〈Q1 |UQ(t)|Q0〉, and uQ1(Q0, t) =
〈
Q0

∣∣∣U−1Q (t)
∣∣∣Q1

〉
, it

evolves into

∫
dQ0G(Q2, Q0; t, 0)uQ1(Q0, t) =

∫
dQ0 〈Q2 |UQ(t)|Q0〉

〈
Q0

∣∣∣U−1Q (t)
∣∣∣Q1

〉
=
〈
Q2

∣∣∣UQ(t)U−1Q (t)
∣∣∣Q1

〉
= 〈Q2 | Q1〉 = δ(Q2 −Q1)

Similarly, we can confirm that if the wave function of the bath oscillator j is θξj1(xj0, t),
at time t > 0, it evolves into δ(ξj − ξj1) at time t > 0.

We emphasize that if the initial state (at t = 0+) is |q1, s1, {ξj1}〉, then the wave function
will evolve at time t into δ(q−q1)δs,s1

∏
j δ(ξj−ξj1). At time t = 0+, becauseQ(t),σz and

{ξj(t)} are linear combinations of operators q0, q̇0, σz, xj0, ẋj0, they form a complete set
of commuting observables of time t = 0+. In other words, at time t = 0+, we consider the
unitary transform from q0, σz, xj0, to Q(t),σz and {ξj(t)} as a variable transform. The set
of wave functions |q1, s1, {ξj1}〉 forms an orthonormal basis in the system’s Hilbert space,
which we call the "eigenstates of the system”. As a result, if the system is initially (that is,
at t = 0+) in one of these states, |q1, s1, {ξj1}〉, the final result at time t is predetermined,
i.e., the measurement is deterministic, with a definite value of q1, s1, {ξj1} .

3. The initial superposition of eigenstates determines the final probability distribution

If the wave function is initially |Ψ0〉 = |ψ0, s〉
∏
j ⊗|χj0〉, then to calculate the wave

function at time t, we must expand Ψ0 in terms of the eigenvectors |q, s, {ξj}〉 in Eq.(15),
i.e., we must calculate

ψ(Q, s, t) =< uQ, s, t|ψ0, s >=

∫
u∗Q(q0, t)ψ0(q0)dq0 < s|s >=

∫
u∗Q(q0, t)ψ0(q0)dq0

(16)

χj(ξj , t) =< θξj , t|χj0 >=

∫
θ∗ξj (xj0, t)χj0(xj0)dxj0

Notice that even though we label these functions by the parameter t, they are the wave
functions at time t = 0. We label them with t only to show that we define them as the
initial state that will evolve to specifiedQ, {ξj} at time t. The probability amplitude for the
system in state |q1, s1, {ξj1}〉 at time t = 0+ is then

Ψ(q1, s1, {ξj1}, t) =< q1, s1, {ξj1}|Ψ0 >=< uq1−s1d−
∑
j ξj1

, s1, t|ψ0 > |s1 >
∏
j

< θξj1 , t|χj0 >

≡ ψ(q1 − s1d−
∑
j

ξj1, s1, t)
∏
j

χj(ξj1, t) (17)
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Because |q1, s1, {ξj1}〉 evolves into δ(q − q1)δs,s1
∏
j δ(ξj − ξj1) at time t, the wave

function at time t is

∫
dq1
∏
j

∫
dξj1

∑
s1

δ(q − q1)δs,s1
∏
j

δ(ξj − ξj1)Ψ(q1, s1, {ξj1}, t) = Ψ(q, s, {ξj}, t)

(18)

This equation seems to be redundant because it simply replaces q1, s1, {ξj1} by
q, s, {ξj}, so in the following, we shall only use Eq.(17) to get the wave function.
However, the purpose of this redundant step is to point out that the final wave function
is obtained by projecting the initial state onto the system eigenstates, which themselves
are taken as the initial states. We emphasize here again that this probability amplitude is
completely determined by the initial wave function |Ψ0〉. More examples will be provided
to demonstrate the implications of this point.

Notice that ψ(Q, t) of Eq.(16) is the wave function in the Schrodinger representation
with the effective Hamiltonian Eq.(14). Thus, we have connected the effective Hamiltonian
approach to the dissipative system problem with the other approaches that take both
the system and the bath into account. We also notice that, despite the fact that our
Ψ(q, s, {ξj}, t) is in a different representation than Ψ(q, s, {xj}, t), the usual probability
interpretation remains valid:

∫ ∫
...
∫
|Ψ(q, s, {ξj}, t)|2

∏
j dξj is the probability density

of finding the particle at q. Since this solution is very simple, it provides a simple way to
analyze other complicated problems, e.g., studying the influence of Brownian motion on
interference, on which we shall not elaborate..

Under certain conditions, for example, at low temperatures and when the system q is
in highly excited states, the range of q is large enough that we can approximately write
Ψ(q, s, {ξj}, t) = ψ(q − sd, s, t)

∏
j χj(ξj , t) for all the values of j that do not have a

vanishingly small probability, q � |
∑

j ξj |. That is, the wave function is factorized, the
dissipative system q can be described by the wave function ψ(q − sd, s, t) only, and the
Brownian motion can be ignored. As a result, it is worthwhile to investigate the width of the

argument of the wave function due to Brownian motion, i.e., the mean value of
(∑

j ξj

)2
at time t. It can be calculated using the expression ψ(Q, s, t) and χj(ξj , t) in Eq.(16), as
shown in the example below.

As one example of the superposition of the “eigenstates of the system,” we assume the
absolute temperature is zero; the initial state of the bath oscillators is in the ground state;
the initial state of the damped simple harmonic oscillator is a wave packet at the origin
(q = 0) with width same as the width of ground state of the simple harmonic oscillator
σ2q = ~

2Mω0
and the spin state is |s >= | + 1 >. The initial state of the damped harmonic

oscillator is
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ψ0(Q0) =

(
1

2πσ2q

) 1
4

exp

(
− 1

4σ2q
(Q0 + d)2

)
where Q0 = q0− d and d ≡ B

ω2
0

. Following the step of Eq.(17) by Gaussian integration,
we find the wave function at time t as a Gaussian,

ψ(Q, t) = φ0(Q, t) exp

(
Mω0

~
−2Qd− a1d2

2 (a1 + iω0a2)

)
φ0(Q, t) =

(
Mω0

π~

) 1
4
(

1

a1(t) + iω0a2(t)

) 1
2

exp

(
−Mω0

2~
ω0a2(t)− iȧ2(t)
ω0a2(t)− ia1(t)

eηtQ2

)
where φ0(Q, t) is the solution when the magnetic field is turned off (B = 0). The

functions a1(t), a1(t), ȧ1(t), ȧ2(t),are given in Appendix I. The initial function ψ0(Q0) =

φ0(Q0 + d, t = 0) is the function of the ground state of the oscillator with the centroid
displaced to −d but Q0 is the position relative to d, so the centroid is at q0 = 0.

The probability distribution of Q ignoring the contribution from the bath, is given by

|ψ(Q, t)|2 =

(
1

2πσ2Q

) 1
2

exp

(
−(Q+ a1d)2

2σ2Q

)
(19)

σ2Q ≡
~

2Mω0

(
ω2
0a

2
2 + a21

)
= σ2q

(
1 +

η2

4ω2
+

1

2

η

ω
sin(2ωt)− η2

4ω2
cos(2ωt)

)
e−ηt

This is a wave packet that begins at Q = −d (i.e., q = 0), oscillates around
Q = 0 (i.e. q = d) , and has its amplitude dampened to zero because a1(t) =

e−
η
2
t
(
cos(ωt) + η

2ω sin(ωt)
)
. With damping time 2/η, the width σQ(t) also damps to

zero,so the wave function collapses to the point at d. If the initial spin state is s = −1, it
collapses to −d.

To include the Brownian motion from the bath, we have the bath oscillator initial wave
function in ground state

χj0(xj0) =
(mjωj
π~

) 1
4

exp
(
−mjωj

2~
x2j0

)
The eigenfunction of ξj |θξj1〉 = ξj1 |θξj1〉 gives θξj1(xj0, t) =(
mj

2π~bj2(t)

) 1
2

exp
[
−i mj

2~bj2(t)

(
bj1(t)x

2
j0 − 2ξj1xj0

)]
. The derivation of θξj1(xj0, t)

is very similar to the derivation of the eigenfunction uQ of Q(t) in Appendix II, (see
Appendix I for the expression for bj1(t), bj2(t) ). The projection of the ground state onto
the eigenvector in Eq.(17) is found by another Gaussian integral as
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χj(ξj , t) =< θξj , t|χj0 >=
(mjωj
π~

) 1
4

(
1

−ibj1 + ωjbj2(t)

) 1
2

exp

(
− mj

2~bj2
ξ2j1

(−ibj1 + ωjbj2(t))

)
(20)

As a result, the contribution to the Brownian motion width derived from χj(ξj , t) is
< ξ2j >= σ2ξj = 1

2

(
b2j1 + ω2

j b
2
j2

)
~

mjωj
.

According to the discussion that follows Eq.(17,18), the width of the wave function

Ψ(q1, s1, {ξj1}, t) = ψ(q − sd−
∑
j

ξj , s, t)|s >
∏
j

χj(ξj , t)

can be calculated from the widths of ψ(Q, t) in Eq.(19) and χj(ξj , t) in Eq.(20) as

σ2Q+ <
(∑

j ξj

)2
> (see Appendix III for the derivation). Long after the damping time

2/η , the width σ2Q → 0 , and thus the Brownian width is given by

<

∑
j

ξj(t)

2

>=

∫ ∫
...

∫ ∑
j

ξj(t)

2∏
j

|χj(ξj , t)|2dξj =
∑
j

< ξ2j >=
∑
j

σ2ξj

From the bath’s spectral density Eq.(4), and the expressions for bj1, bj2, ω, ω0, η in
Appendix I, and Eq.(7), we find

σ2ξ ≡
∑
j

σ2ξj =
∑
j

~
2mjωj

(
b2j1 + ω2

j b
2
j2

)
=

∫
dωjρ(ωj)

~
2mjωj

(
b2j1 + ω2

j b
2
j2

)
(21)

=
η~
πM

∫
dωjωj

M2

c2j

(
b2j1 + ω2

j b
2
j2

)
As t→∞, this approaches

σ2ξ =
∑
j

σ2ξj =
η~

2πM

∫ ∞
0

dω2
j

1

(ω2
0-ω2

j )
2+η2ω2

j

=
~

2πωM

(
π

2
+ arctan(

ω2 − η2

4

ηω
)

)

If η �ω, i.e., if the damping time is much longer than the main oscillator period.

<

∑
j

ξj(t)

2

>≈ ~
2πωM

(
π

2
+ arctan(

ω

η
)

)
≈ ~

2ωM

This Brownian width approximately equals the ground state of the simple harmonic
oscillator.
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Figure 1. (a) Wave function probability density without Brownian motion
(b) with Brownian motion. The initial spin state is specified by a vector ~a
on the Block sphere with θ = π/4 for this case. The probability for the
spin up and down is both non-zero. The color scale is the probability density.
The two wave packets of the spin up and down are well separated near the
beginning. When Brownian motion is ignored, the wave function profile width
approaches zero at t ≥ 5. The wave function collapses to either at q = d = 3,
or q = −d = −3 for t > 5, with the probability of being up and down as
cos2(θ/2) = 0.8535 , and sin2(θ/2) = 0.1464.

As a result, depending on whether s = 1 or −1, the wave function collapses to one of
the two split potential wells at ±d with a spread σξ =

√
~

2ωM . As long as d �
√

~
2ωM

, the spin measurement has a definite answer. From the discussion following Eq.(17,18),
this result is completely predetermined by the initial spin state.

4. An example of the case when the Bloch vector of the pure state spinor is not aligned
with the z axis

When the spin is in a pure state, the initial state can always be specified by a vector
~a = (sin θ cosφ, sin θ sinφ, cos θ) on the Bloch sphere[21] as

|~a >= cos(θ/2) |+〉+ eiφ sin(θ/2) |−〉

Then the initial state Ψ0 = |ψ0 > |~a >
∏
j |χj0 >.

~a is not parallel to the z axis unless θ = 0, or π. Its projection onto the initial system
eigenstate |q1, s1, {ξj1} > in Eq.(15) , given by Eq.(17,20) is

Ψ(q1, s1, {ξj1}, t) =< q1, s1, {ξj1}|Ψ0 >=< uq1−s1d−
∑
j ξj1

, s1, t|ψ0 >< s1|~a >
∏
j

< θξj1 , t|χj0 >

= ψ(q1 − s1d−
∑
j

ξj1, s1, t) < s1|~a >
∏
j

χj(ξj1, t)

According to the discussion following Eq.(17,18), at time t, Ψ0 evolves into the wave
function
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Ψ+(q, t) ≡ Ψ(q, 1, {ξj}, t) = ψ(q − d−
∑
j

ξj , 1, t) cos(θ/2)
∏
j

χj(ξj , t) (22)

Ψ−(q, t) ≡ Ψ(q,−1, {ξj}, t) = ψ(q + d−
∑
j

ξj ,−1, t)eiφ sin(θ/2)
∏
j

χj(ξj , t)

The wave packet split into two, with s = 1 collapsing to q = d with a probability of
cos2(θ/2), and s = −1 collapsing to q = −d with a probability of sin2(θ/2), both with a

width σξ =
√

~
2ωM , given by Eq.(21)

At temperature T the contribution from the Brownian width of the bath to the width of
q is calculated by the bath density matrix as

<

∑
j

ξj(t)

2

>=
∑
j

~
2mjωj

(
b2j1 + ω2

j b
2
j2

)
coth(

~ωj
2kT

)

Figure 2. (a) the width σQξ(t), , σξ(t), and σQ(t); (b)Probability in the wave
packet with spin up (magenta), down(cyan), and total (blue);

Figure 3. (a) the wave function density profile of the wave packets at t = 0

and very close to the beginning at t = 0.05. The two wave packets is already
starting to separate. (b) Wave function density profile at t = 0 and t = 2

compares with and without Brownian motion included. We also indicate the
positions of the two potential wells corresponding to spin up or down, with
arbitrary scale. The two wavepackets are close but do not reach the bottom of
the potential wells yet at t = 2.
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This approaches the width in Eq.(21) as T approaches zero. The width increases with
temperature.

When we apply Eq.(26) and Eq.(19) for |ψ(Q, t)|2 given in Appendix III, we have

|Ψ+(q, t)|2 = cos2(θ/2)
1√
2π

1

σQξ
exp

(
−(q − d+ a1d)2

2σ2Qξ

)

|Ψ−(q, t)|2 = sin2(θ/2)
1√
2π

1

σQξ
exp

(
−(q + d− a1d)2

2σ2Qξ

)

where the width of the wave function density is σ2Qξ = σ2Q + σ2ξ .
For this abstract model, for a case with ~ = 1,M = 1, and the main oscillator

period T0 = 1, ω0 = 2π/T0, η = 2, we choose d = 3, at temperature T = 0. The
angle between the spin direction and the z axis is chosen to be θ = π/4. We plot
the |Ψ+(q, t)|2, |Ψ−(q, t)|2 versus t in Fig.1a when the Brownian motion is ignored, i.e.
with width σQ, and in Fig.1b with Brownian motion included, i.e., with width σQξ. The
separation of the two wave packets is visible from the very beginning near t = 0.

The width in Eq.(19) σ2Q(t) → 0 as t → ∞. As a result, the wave packet is already
approaching δ function at t = 5 in Fig.1a.

The width of |ψ(Q, t)|2, i.e., σQ(t), Brownian width σξ(t) and total width σQξ(t), as
function of t are also shown in Fig.2a.

The probability of falling into upper and lower potential well is shown in Fig.2b, i.e.
they are constants starting from t = 0+: for θ = π/4, they are cos2(θ/2) = 0.8535

(magenta); sin2(θ/2) = 0.1464 (cyan). That is, they are predetermined. Their sum is
1(blue).

The profile of wave packets with spin up and down begins to separate at t = 0.05, as
shown in Fig.3a. The wave packets at t = 2 are shown in Fig.3b, where we compare the
profiles with and without Brownian motion when they are well separated.

The conclusion is: the probability distribution cos2(θ/2), sin2(θ/2) is predetermined
by the initial state |~a >.

5. Implications for applying the result to the Bell theorem

We can now apply the results of Sections 1,2,3 to the Bell theorem. The main results
of these sections are that the final result of the measurement is determined by the wave
function of the initial state, as stressed at the end of Section 1, and clearly shown in Fig.2b.
Since this is only for a specific model, the interpretation and the implication here are only
suggestive.
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5.1. We first repeat the statement of the Bell theorem to clarify the notations used here.

In the Bell theorem experiment [1,22], we assume that the two entangled particles leave
the origin at point O and move in opposite directions, so that particle 1 reaches position A
and measures σ1 � ~a and particle 2 reaches position B and measures σ2 �~b (~a ,~b are some
unit vectors).

The paper assumed a hidden variable λ such that the result of measuring σ1 � ~a is
determined by ~a and λ as A(~a, λ), and the result of measuring σ2 � ~b is determined by
~b and λ as B(~b, λ) in the same instance, and

A(~a, λ) = ±1;B(~b, λ) = ±1. (23)

According to Bell, “The vital assumption is that the result B for particle 2 does not depend
on the setting ~a of the magnet for particle 1, nor A on ~b”[22]. Bell assumed that if ρ(λ)

is the probability distribution of λ, then the expectation value of the product of the two
components σ1 � ~a and σ2 �~b is

P (~a,~b) =

∫
dλρ(λ)A(~a, λ)B(~b, λ) (24)

Bell supposes that the experimenter has a choice of settings for the second detector:
it can be set either to ~b or to ~c . Bell proves that if Eq.(23) and Eq.(24) are correct, the
difference in correlation between these two choices of detector settings must satisfy the
inequality

|P (~a,~b)− P (~a,~c)| ≤ 1 + P (~b,~c)

Then, Bell shows it is easy to find situations where quantum mechanics violates the
inequality, i.e., the “Bell inequality”, thus Eq.(23) and Eq.(24) derived from the “local
hidden variable theory,” is incompatible with quantum mechanics.

5.2. The analysis of two separate measurements at remote positions A and B on two
particles is equivalent to the analysis of two measurements on one particle at the origin

When we apply the result of Sections 1, 2, and 3, because the result is predetermined
by the initial condition, it is clear that the measurement at any later time would not affect
the initial probability amplitude. And, any conclusion from the result does not provide
any information about whether the measurement at A influences B. Consequently, the
experiment does not carry any information about “action at a distance,” or “spooky action,”
or “nonlocal” property.

Therefore, we only need to compare the probability amplitude at time t = 0, i.e., we
compare the measurement of σ1 � ~a and σ2 �~b at time t = 0. When we compare these two
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measurements with the experiment in the Bell theorem, we can compare them at t = 0,
which means we compare them at the origin O.

Furthermore, because the two entangled particles are completely correlated such that
σ1 �~a = −σ2 �~a, we only need to compare −σ2 �~a with σ2 �~b at time t = 0 and investigate
the condition for both to have definite values. In the following, when applying the results
of Section 3, we can consider ~z as~b, and take ~a the same as the ~a in Section 3.

5.3 The statement “There are no hidden variables for non-commuting observables to have
definite values at the same time” is the consequence of the uncertainty principle. We discuss
its implications for the Bell theorem and “Schrӧdinger’s cat problem”.

Because we start with σ1 �~a = ±1, and measure σ2 �~b, the complete correlation between
particles 1 and 2 requires particle 2’s initial state to be either σ2 � ~a = 1, or σ2 � ~a = −1.
So as long as sin θ 6= 0, particle 2’s initial state is not an eigenstate of σ2 �~b. Comparing
with the Bell theorem, this is equivalent to measuring σ2 � ~a first and then immediately
measuring σ2 �~b.

The initial state for the measurement of σ2 � ~b is then an eigenstate of σ2 � ~a, not an
eigenstate of σ2 �~b, even though it is a pure state, i.e., it is the result of the measurement of
σ2 � ~a. As a result, as long as sin θ 6= 0, the measurement of σ2 �~b must have two possible
outcomes. This is not determined by any external observer, but is because the initial state is
not a definite state for the measurement of σ2 �~b, even though it is a definite state for σ2 �~a.

It is also clear that if sin θ 6= 0, there are no hidden variables that can give both σ2 � ~a
and σ2 � ~b definite values. This is the Uncertainty Principle. Further, the probability of
σ2 �~b = 1 is cos2(θ/2), and the probability of σ2 �~b = −1 is sin2(θ/2) according to Born
rule.

In the present model case, it is very natural to understand why if sin θ 6= 0, there are
two outcomes from σ2 �~b. Since the initial state is a pure state with ~a on the Bloch sphere,
it is a superposition of two components. The one with σ2 �~b = 1 will be deflected by the
magnetic field to direction ~b, the other with σ2 �~b = −1 will be deflected to direction −~b.
This probability distribution between the two outcomes, on the other hand, exists from the
start as a physical reality embodied later by magnetic deflection.

As a result, the measurement of σ2 � ~a is insufficient to prepare a definite state for the
second measurement; we must still specify that the measurement setup in the environment
after the start is still a measurement of σ2 �~a, or in other words, a measurement of σ2 �~b but
with~b = ±~a.

The implication of this is that even though the initial wave function is the eigenvector
of a complete set of commuting observables and has definite values, this alone cannot
guarantee a definite status. Because, in addition to this, we must first make sure the
measurement device is arranged to measure this same set of observables. From this point
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of view, the wave function is not a complete description of the system; a description of the
measurement environment must be included in order to have a complete description. One
of the foundations of quantum mechanics, the Uncertainty Principle, is based on the fact
that no physical system can be built to let two non-commuting observables have definite
values; consequently, no one can prepare such an initial state in any experiment.

If we consider the case in Section 3 with ~a = ~x = (1, 0, 0), then θ = π
2 ,φ = 0,

|~a >= cos(θ/2) |+〉+ eiφ sin(θ/2) |−〉 =
1√
2

(|+〉+ |−〉)

we may consider this as a model to compare with an extremely simplified
“Schrӧdinger’s cat problem”. It is not an eigenstate of σz which is the measurement we
are taking. According to our discussion above, the initial state is an eigenstate of the
measurement of σ �~a. It is not a definite state for the measurement of σz from the beginning,
because it has a probability of 50% for spin up or down. So the initial measurement of
spin σ � ~a produced an ensemble of initial states for the following measurement of σz .
We emphasize that this probability distribution is not generated at the end by someone
observing it when the measurement of σz is completed, but is already determined right
after the measurement of σ � ~a. The role of a final measurement of σz is to sort out the
distribution, sample |+〉 or |−〉, and put them into the centers of the two split potential
wells.

Therefore, there is no need to resort to any “external observer”.
No matter whether there is any one to observe the result, the probability distribution is

certain from the very beginning. |~a > is called a “pure state” only in the sense that it will
give a definite result if one measures σ � ~a. The main point is no one can prepare a definite
state for σz by measuring σ � ~a.

5.4. At this point, one may ask why the Bell theorem sometimes seems to generate a sense
of non-locality in quantum mechanics.

As we discussed above, the violation of Bell inequality by quantum mechanics
is because the Uncertainty Principle contradicts the hidden-variable theory. It was
unnecessary to replace the “hidden variable theory” with the “local hidden variable theory”.
There is no need to resort to the word “local” in the derivation of Bell inequality.

According to reference [1], “In the words of physicist John Stewart Bell, for whom this
family of results is named, ’If [a hidden-variable theory] is local, it will not agree with
quantum mechanics, and if it agrees with quantum mechanics, it will not be local’ ”.

This conclusion seems to generate a sense of some non-locality in quantum mechanics
when the experiment indeed agrees with quantum mechanics. However, with a careful
examination of the derivation in 4.1, as long as we assume there is a hidden variable theory,
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i.e., Eq.(23) and Eq.(24), we can follow Bell’s derivation and reach the same conclusion as
the Bell theorem without resorting to locality or non-locality.

The the basic assumption by Bell for his derivation is “the result B for particle 2 does
not depend on the setting ~a of the magnet for particle 1, nor A on ~b”[22], as we refered to
in 4.1. We emphasize here that communication between A and B (or not) is irrelevant.

Even if A does communicate with B such that B receives information in advance that
the setting chosen by A is ~a, as long as B does not choose the setting ~b to be parallel to ~a,
Bell’s assumption will still lead to Eq.(23) and Eq.(24), which then leads to Bell inequality
without resorting to locality or non-locality, i.e., without resorting to whether there is any
communication between A and B.

So we may rephrase the above statement (1) as a new statement (2): “If a
hidden-variable theory can give definite values to non-commuting observables, the result
will not agree with quantum mechanics, and if it agrees with quantum mechanics, then no
hidden-variable theory can give definite values to non-commuting observables. “

As long as the Uncertainty Principle is correct, it is natural that quantum mechanics
will violate Bell inequality, and also it rules out a “hidden variable theory”. Both the Bell
theory and our discussion has nothing to do with whether there is non-locality, “action-at-a
distance”, or not.

The theory we used is non-relativistic, which is justified because there is nothing close
to light speed involved.

The comparison of statement (1) and statement (2) and the discussion above
demonstrates the experiment’s agreement with quantum mechanics does not provide
information related to non-locality. The inclusion of the word "local" in Bell’s statement
here shifts the emphasis from "hidden variables theory" to "local hidden variable theory".
This contradicts quantum mechanics, giving the impression that the confirmation of
quantum mechanics prediction leads to some non-locality. Hence, the discussion above
suggests this statement may be misleading if one does not carefully examine the basic
ground underlying the derivation of the Bell theorem.

We conclude that as long as the Uncertainty Principle is established, violation of the
Bell inequality in the experiment entirely ruled out the existence of any hidden variable
theory, irrelevant of any locality or non-locality.

6. Summary: The implications for the understanding of the statistical interpretation
of quantum mechanics

The preceding discussion in Section 4 appears to be simply repeating the fundamentals
of quantum mechanics; thus, as quantum mechanics predicts, it leads to the violation of
Bell Inequality. Indeed, we have demonstrated that in quantum mechanics, when the Born
Rule is applied to the initial state, the result is a self-consistent theory that includes using
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the Schrӧdinger equation to describe the quantum measurement process itself, without
resorting to non-locality, hidden variable, or any external observer; without resorting
to whether the measurement at A immediately influences the measurement at B or the
distance between A and B. Thus, it removes many mysteries surrounding the statistical
interpretation of quantum mechanics.

We emphasize that because the discussion is only for a specific model, the implications
of the discussion in Section 4 are only suggestive and summarized as:

1. The derivation of the wave function collapse in the measurement process in Sections
1, 2, and 3 shows the probability distribution is determined from the very beginning
(i.e., t = 0), not at the end.

2. As a result, when Bell inequality is violated in an experimental test of the Bell
theorem, there is no paradox arising from the concepts of “non-locality” or “action
at a distance”.

3. A linear superposition of the eigenstates of a complete set of commuting observables
is an ensemble of systems with a probability distribution determined by the Born rule.
A wave function will give a definite measurement result only if it is the eigenstate
of the observables being measured. This crucial point removes many mysteries
surrounding the statistical interpretation of quantum mechanics.

4. This suggests that as long as the Born rule is applied to the interpretation of the
initial state, the Born rule at the end of the measurement can be derived from the
Schrӧdinger equation.

It is important to note, in the model case we have discussed here, 1) the correlation between
the two entangled particles is assumed to be completely preserved, and 2) the fact that the
discussion about the violation of Bell inequality without resorting to the distance between
A and B does not imply that the distance between A and B is irrelevant to the experiment
on the entangled particles. On the contrary, the longer distance between A and B means
the experiment design needs to preserve the correlation between the two particles over a
longer distance.
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Appendix I
The following expressions are used in the derivation in Sections 1, 2, and 3. In Eq.(7).

with a1(t) = µe−νt−νe−µt
µ−ν , a2(t) = − e−µt−e−νt

µ−ν ,µ ≡ η
2 + ωi,ν ≡ η

2 − ωi and here

ω ≡
(
ω2
0 −

η2

4

)1/2
, we have

a1(t) = e−
η
2
t
(

cos(ωt) +
η

2ω
sin(ωt)

)
a2(t) =

1

ω
e−

η
2
t sin(ωt)

ȧ1(t) = −ω2
0a2(t)

ȧ2(t) = e−
η
2
t cos(ωt)− η

2ω
e−

η
2
t sin(ωt)

a1(t)ȧ2(t)− ȧ1(t)a2(t) = e−ηt

where we can confirm that a1(0) = 1, a2(0) = 0, ȧ1(0) = 0, ȧ2(0) = 1.
Then, use Eq.(9) and the expressions of a1(t), a12(t), ȧ1(t), ȧ2(t), we find the

commutiator

[Q, Q̇] = [a1(t)Q0 + a2(t)Q̇0, ȧ1(t)Q0 + ȧ2(t)Q̇0] = e−ηt
i~
M

Also in the solution of the damped oscillator equation Eq.(5), i.e., Eq.(7), the
coefficients of the j’th bath oscillator contribution to q

bj1(t) = − cj
M InverseLaplace( s

(s2+ω2
j )(s+µ)(s+ν)

)

= − cj
M

[
ωj(µ+ν) sin(tωj)

(µ2+ω2
j )(ν2+ω2

j )
+

(µν−ω2
j ) cos(tωj)

(µ2+ω2
j )(ν2+ω2

j )
+ µe−µt

(µ−ν)(µ2+ω2
j )
− νe−νt

(µ−ν)(ν2+ω2
j )

]
bj2(t) = − cj

M InverseLaplace( 1

(s2+ω2
j )(s+µ)(s+ν)

)

= − cj
M

[
(µν−ω2

j ) sin(tω)
ωj(µ2+ω2

j )(ν2+ω2
j )
− (µ+ν) cos(tωj)

(µ2+ω2
j )(ν2+ω2

j )
− eµ(−t)

(µ−ν)(µ2+ω2
j )

+ eν(−t)

(µ−ν)(ν2+ω2
j )

]
bj1(t→∞) = − cj

M

[
ωj(µ+ν) sin(tωj)

(ω2
j+µ

2)(ω2
j+ν

2)
+

(µν−ω2
j ) cos(tωj)

(ω2
j+µ

2)(ω2
j+ν

2)

]
ωjbj2(t→∞) = − cj

M

[
(µν−ω2

j ) sin(tωj)
(ω2
j+µ

2)(ω2
j+ν

2)
− ωj(µ+ν) cos(tωj)

(ω2
j+µ

2)(ω2
j+ν

2)

]
bj1(t→∞)2 + ω2

j bj2(t→∞)2 =
c2j
M2

1
(ω2

0-ω2
j )

2+η2ω2
j

where we can confirm that bj1(0) = bj1(0) = ḃj1(0) = ḃj1(0) = 0.
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Appendix II
Denote the eigenvector ofQ(t) = a1(t)Q0+a2(t)Q̇0 with eigenvalueQ1 as uQ1(Q0, t),

where Q0 ≡ q0 − σzd, Q̇0 ≡ − i~
M

∂
∂q0
≡ − i~

M
∂
∂Q0

, Q(t) and Q̇(t) are understood as a
function of q0−σzd, q̇0 from Eq.(9). Since σz commute withQ0, Q̇0, there is no ambiguity
for the functions of Q0, Q̇0 regarding the order of σz in any product in the function. The
eigenequation

(
a1(t)Q0 −

i~a2
M

∂

∂Q0

)
uQ1 = Q1uQ1

leads to

uQ1 = C(Q1, t) exp

[
−i M

2~a2
(
a1Q

2
0 − 2Q1Q0

)]
C(Q1, t) is determined by orthonormal condition on uQ, i.e.,∫
dQ0u

∗
Q2

(Q0)uQ1(Q0) = δ(Q1 − Q2) as C(Q1, t) =
(

M
2π~a2

) 1
2
e
−i M

2π~a2
φ(Q1,t)in

Eq.(10).

Appendix III Wave function probability density with Brownian motion
We abbreviate the wave function density as f(

∑
j ξj1) = |ψ(q1−s1d−

∑
j ξj1, s1, t)|2,

then using the Taylor expansion of f it is straight forward to show that

∫ ∫
..

∫ ∫
f(
∑
j

ξj)
∏
j

|χj(ξj , t)|2dξj

=
1∏

j

√
2πσξj

∫ ∫
..

∫ ∫
f(
∑
j

ξj) exp

−∑
j

ξ2j
2σ2ξj

∏
j

dξj (25)

=
1√

2πσξ

∫
f(ξ) exp

(
− ξ2

2σ2ξ

)
dξ

σ2ξ =
∑
j

σ2ξj

Thus

|Ψ(q, s, t)|2 ≡
∫ ∫

..

∫ ∫
|Ψ(q, s, {ξj}, t)|2

∏
j

dξj

=

∫ ∫
..

∫ ∫
|ψ(q − sd−

∑
j

ξj , s, t)|2
∏
j

|χj(ξj , t)|2dξj (26)

=
1√

2πσξ

∫
|ψ(q − sd− ξ, s, t)|2 exp

(
− ξ2

2σ2ξ

)
dξ
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For probability density of Eq.(22),with |ψ(Q, t)|2 = |ψ(q − d, t)|2 in Eq.(19) we have

|Ψ+(q, t)|2 = cos2(θ/2)
1√

2πσξ

∫
|ψ(q − d− ξ, 1, t)|2 exp

(
− ξ2

2σ2ξ

)
dξ

=
1√

2πσξ

∫ (
1

2πσ2Q

) 1
2

exp

(
−(q − sd− ξ − a1z)2

2σ2Q

)
exp

(
− ξ2

2σ2ξ

)
dξ

= cos2(θ/2)
1√
2π

1

σQξ
exp

(
−(q − d+ a1d)2

2σ2Qξ

)

where the width of the distribution is σ2Qξ = σ2Q + σ2ξ . The same way the probability of
the lower potential well with spin down is

|Ψ−(q, t)|2 = sin2(θ/2)
1√
2π

1

σQξ
exp

(
−(q + d− a1d)2

2σ2Qξ

)
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