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Abstract: In this paper, by using a hyperfinite dimensional space and
time lattice (ST -lattice) of nonstandard analysis, we present a variant of
Bohmian interpretation of quantum mechanics which we call probabilistic
Bohmian mechanics, PBM. We describe the model for non-relativistic
quantum mechanics in detail and elaborate on its relativistic extension. The
assumption of quantum equilibrium does not exist in the PBM model and its
absence is compensated for by assuming that the particles are moving with
infinite speed on a space time lattice according to probability density, which
in PBM is regarded as density of space and time position states. In relativistic
extension the PBM model assumes that Lorentz symmetry of space and time is
just a wave phenomenon related to the space time symmetry of wave equations
on real standard axes, whereas the motion of particles with infinite speed can
only be described within the hyperfinite dimensional time and space lattice
of preferred space time foliation (PST -lattice). In the PBM model the
particle trajectories do not exist on the standard real time and space axes of any
Lorentz frame and thus the assumption of wave function collapse is necessary.
The wave function collapse is considered as a two-step process of decoherence
(on standard real axes) and the subsequent particle jump (on the ST -lattice).
For the PBM model, as an objective collapse theory, the causality problem,
related to wave function collapse, is addressed by the preferred space-time
foliation.
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1. Introduction

It is now nearly one hundred years since the initiation of modern quantum mechanics
(and later its extension, the quantum field theory), but despite this and its undeniable
success in calculating observable phenomena, the solution to its measurement problem, its
non-locality and the true nature of its wave-particle duality are still unsettled issues in the
physics community. So far, we have had different interpretations for the solution of the
measurement problem (e.g. many wor1ds interpretation, objective collapse theories, etc.),
all of which deal with different problematic issues and which for some people are found
not to be fully compelling [31].

Any quantum interpretation which is built upon the assumption that both particles
(with space-time trajectories) and waves are real objects can be called, a Bohm like
interpretation. One known example in particular is Bohmian mechanics, BM ([7], [8].
[5] and [29]) which relates best with the deterministic world of non-relativistic large
objects, by introducing the guiding equation, d(Qk(t))

dt = ~
mk

Imψ∗∇kψ
ψ∗ψ (Q(t), t), although

to justify statistics of quantum mechanics (Born rule) for small particles, in addition to
the guiding equation and the Schrödinger wave equation, it is necessary to accept the
quantum equilibrium hypothesis, which asserts that we always have initial |ψ|2 distribution
of particle configurations in an ensemble. In fact, the quantum equilibrium hypothesis is
too big an assumption, of obscure origin, which becomes inevitable if, one accepts that
the guiding equations are describing particle motions and trajectories. As we argue below,
without the quantum equilibrium hypothesis, any Bohm like interpretations of quantum
mechanics, which assumes finite speed for particles (whether they move deterministically
or probabilistically), is inconsistent with Born rules and thus it is no wonder that no
such Bohm like interpretation of QM (without the quantum equilibrium hypothesis) has
been presented before. One other issue with Bohmian mechanics, from an ontological
perspective, is the role and the meaning of the wave function. Bohmian mechanics,
which is deterministic in the non-relativistic domain by Bell type extensions, becomes
a combination of deterministic (guiding wave equations) and probabilistic (creation and
annihilation of particles) processes in which the wave function has a determining role even
though we do not have a clear picture of what the wave function really is. In other words,
BM makes the meaning and practical use of wave function, which is totally probabilistic
in common usage of QM (Born’s rule), more complicated without adding to its ontology.
It should also be mentioned that one of the problems which exists today in the extension
of Bohmian mechanics to the relativistic domain, is finding a proper guiding equation
for Photons [29]. Despite all of this, one should also consider the fact that any kind of a
Bohm-like model which relates particle motions to their wave function and their positions
at each instant of time, will require a preferred time foliation for relativistic extension.
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Furthermore, to recover the results of field theory and to consider particle creation and
annihilation, the Bell type extensions for Bohm like mechanics, are possibly the way
forward.

The goal of this paper is to present a probabilistic ontological model without adopting
the quantum equilibrium hypothesis. To begin the discussion and explain the relationship
between this goal and non-standard analysis, we can consider wave function broadening of
free particles inQM . Let us suppose the wave function of a one particle system is confined
in the sphere with the radius R1 (the wave function, ψ, is zero out side the sphere) and, in
addition, let us consider the ensemble distribution of particles is concentrated in a smaller
sphere with the radius R2 (R1 > R2) with the same center point (the assumption which is
against quantum equilibrium hypotheses). For the Schrödinger equation (non-relativistic
QM ) the tail speed of wave function is infinite, so obviously no matter how the particle
moves (whether it is probabilistic or deterministic), with finite speed, one can not justify
Born’s statistical rule. The only option we have is to consider particles of infinite speed
and one of the known logical framework in which this idea can be raised is Non-standard
analysis (NSA). Even if, in the relativistic domain, one assumes such a localized wave
packet (which is a combination of positive and negative particle states) is spreading with
speed C and particles in ensemble (confined within smaller sphere) are moving with the
same speed C, there is always a distance R1 − R2, from the edge of the wave function,
untouched by particles in the ensemble. The only other possibility is that one assumes
the particles are moving with speed V >> C and thus the particles at the edge of the
smaller sphere in the ensemble will reach the edge of wave function after time t = R1−R2

V−C
and the speed V can be considered so large that it can justify Born’s rule within our
experimental accuracy. However, it should be mentioned that from a theoretical point of
view the fact that t is non-zero is not consistent with Born’s rule and also both speeds
much faster than light and infinite speed, confront the problem of inconsistency with
special relativity where the choice of infinite speed is more capable in coping with the issue.

The history of non-standard analysis is full of debate. It was first Archimedes, who
postulated, the Archimedes axiom for numbers, in contradiction to the existence of infinite
and infinitesimal numbers, although he used infinitesimal as a useful tool for derivations
(but not for proofs). The idea of infinitesimals appeared again in the works of the pioneers
of calculus, Newton and Leibnitz, but due to insufficient logical grounds, these ideas were
soon replaced by the methods of Bolzano and Cauchy. The idea was reborn again in the
early sixties of the twentieth century by Abraham Robinson who introduced hyperreal,
[25], as the first examples of Non-Archimedean real closed field of numbers (which for
example can be constructed on the mathematical grounds of ZFC set theory). In this
paper we take an approach to the foundation and interpretation of quantum mechanics



International Journal of Quantum Foundations 9 (2023) 134

based on hyperfinite dimensional spaces and also hyperfinite splitting of the time axis of
nonstandard analysis (NSA). For the purpose of clarification of mathematical notation
the following points should be noted. In NSA, the field of reals, R (called standard real
numbers) is extended to ∗R that includes bounded numbers (elements of the set B) which
are not infinitely large (we denote l ∈ B by l � ∞), infinitely large numbers (element
of the set ∗R \ B) , which are greater than any real number (we denote Ω ∈ ∗R \ B by
Ω ∼ ∞) and their reciprocals (ε = 1/Ω) which are called infinitesimal numbers (elements
of the set J ), the absolute values of which are smaller than any positive standard numbers
(we denote ε ∈ J by ε ≈ 0). Two bounded numbers, l1 and l2, are called infinitely close,
if (l1 − l2) ∈ J and it is denoted by l1 ≈ l2. Any bounded number, l, is infinitesimally
close to a real number (called its standard part): l ≈ st(l) where st(l) ∈ R. Also in NSA
the set of natural numbers N is extended to ∗N which includes natural numbers (elements
of N) which are called finite hyperinteger and infinite hyperinteger numbers (elements of
∗N \ N) which are greater than any natural number. A vector space whose dimension is
in ∗N is called hyperfinite dimensional space. The application of NSA to the foundation
of quantum mechanics has been carried out by some authors (e.g. [13], [1], [2], [24], [6])
mainly with the original motivation of presenting an alternative approach to von Neumann
axioms of the mathematical foundation of quantum mechanics (describing observable and
self-adjoint operators). Our work here is different in several ways, the most important of
which is that, in the application of NSA our focus is to build a construction by which we
present a new interpretation of quantum mechanics. In particular, we not only make the
space but also the time axis discrete by infinitesimal spacing such that, for example, in
non-relativistic QM our starting point should be the time dependent Schrödinger equation
rather than the time independent Schrödinger equation.

Section 2 is about PBM interpretation for non-relativistic QM . Here, we not only make
the space but also the time axis discrete. We assume there is the smallest time interval
∆t ≈ 0 in nature and for each particle of mass m there is the smallest length, L ≈ 0

(given by (1)). We define hyperfinite dimensional time and space lattice, ST -lattice

(definition (3)) by using these infinitesimal values. Our fundamental principle in extension
to non-standard numbers is to have complete correspondence with QM results on standard
real space and time axes. Therefore, in order to express wave equation, we do not
require ourselves to maintain Galilean symmetry (for Schrödinger equation) or Lorentzian
symmetry (for Dirac equation) on non-standard axes, rather, it is sufficient to show such
symmetries exist on real standard axes. ST -lattice is used here to describe two things;
first, the locations (of mass centers) of several particles, x̂, at specific time t̂ and secondly,

the extended wave function, ψ̂(x̂, t̂) =

√
R̂(x̂, t̂) exp(i θ̂(x̂, t̂)), describing those particles.

In this paper, we interpret the wave function square, R̂(x̂, t̂), as the density of position
states on which the mass centers of a particle can rest at each position x̂ in the time
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interval [t̂, t̂ + ∆t]. The motions of particles are described by probabilistic jumps , for
which different models can be presented. One of the simplest of such models which leads
to Born’s statistical rule is introduced by (15) and (21). As with BM, the description
of particle motions by probabilities (21) in the PBM model is non-local, for example the
probability for motion of a particle to any neighboring points depends on the position of
other particles described by the wave function. The particles do have trajectories on the
ST -lattice but not on corresponding standard real space and time axes. This necessitates
the assumption of the wave function collapse, as is further discussed in part 2.3. The wave
function collapse is described as a two step process, the wave function decoherence and
the subsequent particle jump (given by the probability equation (17)).

In relativistic extension, as mentioned earlier, the same problem of wave function
broadening exists, leading us again to assume infinite speed for particles. The motion
of particles with infinite speed encounters two problems; firstly, the special relativity and
secondly, the measurement problem. As discussed in section 3, in the PBM model Lorentz
symmetry is only related to wave function equations and not the particle motions. The
particles are assumed to move with infinite speed within the hyperfinite dimensional space
and time lattice of the preferred Lorentz frame (which we call PST -lattice) filling all
possible position states at every instant of standard real time t and what any Lorentz frame
perceives (including preferred frame of reference) at each space and time moment on a
standard real time axes is just the wave function. In another words, the Lorentz symmetry
of space and time, according to which all our measuring devices work, the rest mass of
particles and mass increase by velocity etc, are just wave phenomena. These considerations
bring up the second problem, which is the measurement problem. As will be discussed in
the PBM model, the interpretation of wave function as something which represents position
states, along with the assumption of infinite speed for particles, makes the wave function
collapse necessary for the model. In other words the PBM model is a type of objective
wave collapse theory. As is discussed in section 3, the PBM model as an objective collapse
theory, offers a solution for the causality problem of such models by using preferred time
foliation. In section 4, the PBM is compared with some other interpretations of QM .
Finally a number of related subjects are included in Appendices A and B.

2. PBM interpretation for non-relativistic QM

2.1. Hyperfinite dimensional space-time lattice Let us assume L ≈ 0 is the smallest

distance for motion of a particle of mass m and begin with this question: What is the
maximum time the center of mass of a particle can stay in distance L, according to the
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uncertainty principle? The answer is,

∆p∆x = (
mL

τ
)L ≥ ~ =⇒ τ ≤ mL2

~
,

and thus the maximum time is ∆t = mL2/~. It should be mentioned that if such a
jump (with τ = ∆t) takes place, the speed of the particle would be Vjump = ~/mL ∼ ∞,
as will be discussed in part 2.3. Therefore consistent with uncertainty principle we define
the following relationship as,

L ≈ 0, (∆t) =
mL2

~
, (1)

between smallest time ∆t ≈0 and smallest length L ≈ 0 for the motion of particle of
mass m. Let us first define space and time lattice for motion of one particle with the mass
m in one dimension. We assume there is a non-zero positive real number, l0 with length
dimension and N∗ is infinite hyperinteger number (N∗ ∈ ∗N \ N) such that,

L =
l0
N∗

. ≈ 0.

Now by taking M∗ = (N∗)2 we can make the space line discrete as
−(M∗)L,· · · ,−L,0,L,· · · , (M∗)L. The end points ±(M∗)L = ±N∗l0 are infinite. Thus
hyperfinite one dimensional space axis is given by

{−(N∗) l0, · · · ,−L, 0, L, · · · , (N∗)l0} ≡ [Z2(M∗)+1]space.

The length of a whole space line is, (2N∗) l0. Now we can rewrite (∆t) as

(∆t) =
mL2

~
=

(∆t0)

(N∗)2
where, (∆t0) =

ml0
2

~
.

By taking M∗1 = (N∗)3, the time axis can be made discrete as −(M∗1 )∆t

, · · · ,−∆t, 0,∆t, · · · , (M∗1 ) ∆t. The end points ±M∗1 ∆t = ±N∗∆t0 are infinite. Thus
hyperfinite time axis is given by

{−N∗∆t0, · · · ,−
mL2

~
, 0,

mL2

~
, · · · , N∗∆t0} ≡ [Z2(M∗1 )+1]time.

The length of the time line is therefore equal to, 2N∗∆t0. To define the space and time
lattice of n particles in 3 dimensional space, with masses m1,m2, ...,mn, the infinitesimal
∆t should be equal for all particles. Thus, configuration space can become discrete as
follows,

Li ≈ 0, (∆t) =
mi L

2
i

~
, (2)

m1L1
2 = m2L2

2 = ... = mnLn
2.
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In the similar way to one dimensional case of one particle, we can assume there are n real
positive numbers li for i = 1, ..., n, with length dimensions such that we have,

Li =
li
N∗

, i = 0, 1, 2, ..., n,

where li’s satisfy,m1 l1
2 = m2 l2

2... = mn ln
2. By defining the space line for each particle

mi,

[Z2(M∗)+1]i− space ≡ {−(N∗) li, · · · ,−Li, 0, Li, · · · , (N∗)li} i = 0, 1, 2, ..., n,

the configuration space for n particles is given by,

Πn
i=1

(
[Z2(M∗)+1]i−space

)3
.

Therefore the space and time lattice, ST -lattice is defined as,

ST -lattice ≡ Πn
i=1

(
[Z2(M∗)+1]i−space

)3 × [Z2(M∗1 )+1]time. (3)

In this paper we write position variables and functions on the ST -lattice using
characters with a hat, for example x̂, ŷ, ẑ, ... (for space variables) and t̂, t̂′ (for time
variables) versus standard reals x,y,z and t,t′. By location x̂ and time t̂ we mean spatial
interval [x̂, x̂+L] and time interval [t̂, t̂+∆t]. Although a standard real number may or may
not be exactly on the ST -lattice , nevertheless, it can be considered as a generalization to
standard real axes because it contains points which are infinitely close to any standard
real numbers (e.g. equal up to all decimal digits) and there are ways to attribute to
any real number a unique point on the hyperfinite dimensional lattice. In this paper we
sometimes refer to the ST -lattice as the hyperfinite dimensional space and time lattice
or just the hyperreal axes (or lines). Due to existence theorems in NSA, the extension
of ψ(x) (defined on standard real space line) to ψ̂(x̂) (defined on hyperfinite dimensional
lattice [Z2(M∗)+1] space) is expected to exist and satisfy mathematical conditions, such as
continuity,

∀x̂ ∈ [Z2(M∗)+1] space, stψ̂(x̂) = ψ(st(x̂)),

and also the condition for having derivative,

∀r ∈ Z, st(
ψ̂(x̂+ r L)− ψ̂(x̂)

r L
) = ∂xψ(x)|x=st(x̂),

whenever and wherever needed. .
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2.2. Wave equations on hyperreal lines

In this section we want to express the Schrödinger equation on the ST -lattice. We also
partly explain what the wave function is. When taking into consideration the assumption of
the existence of the smallest length and time, it seems logical to express the wave equation
using a finite difference formula on the ST -lattice. Here, for simplicity, we consider the
one particle spinless Schrödinger equation in one dimension∂tψ(x, t) = i ~

2m∂
2
x ψ(x, t)− i

~v(x)ψ(x, t), (x ∈ R, t > 0),

ψ(x, 0) = ζ(x), (x ∈ R).
(4)

and its wave function, ψ(x, t) =
√
R(x, t) exp (i θ(x, t)) but we generalize to the case of

the 3 dimensional n-particle Schrödinger equation in section 2.4. We begin by making the
differential equation (4) discrete on the ST -lattice. The initial wave function is assumed
to be square integrable,

∫∞
−∞ dxζ

∗(x) ζ(x) = 1, with ∂xζ(±∞) = 0. We can extend ζ(x)

to ST -lattice, ζ̂(x̂) and demanding,∑
x̂∈[Z2(M∗)+1]space

L ζ̂(x̂)ζ̂∗(x̂) = 1 (5)

Using the relation (1) between ∆t and L and finite difference formulas, we can express
the Schrödinger equation on the hyperfinite dimensional space and time lattice as a simple
linear recursive formula,

ψ̂(x̂, t̂+∆t) = ψ̂(x̂, t̂)− i ψ̂(x̂, t̂)+
i

2

(
ψ̂(x̂−L, t̂)+ ψ̂(x̂+L, t̂)

)
− i

~
v̂(x̂)ψ̂(x̂, t̂)∆t (6)

It can be easily checked that the above equation, on standard real time and space lines
reads,

∂tψ(x, t) = st[(
ψ̂(x̂, t̂+ ∆t)− ψ̂(x̂, t̂)

∆t
)]

= st[
i~

2mL2

(
ψ̂(x̂− L, t̂) + ψ̂(x̂+ L, t̂)− 2ψ̂(x̂, t̂)

)
− i

~
v̂(x̂)ψ̂(x̂, t̂)]

= i
~

2m
∂ 2
x ψ(x, t)− i

~
v(x)ψ(x, t),

where x = st(x̂) and t = st(t̂). By using equation (6) one can check how fast the tail
of a free wave packet (v(x) = 0), initially zero outside a bounded region of space, would
spread on the hyperfinite dimensional lattice (the tail speed). For Schrödinger equation the
tail speed is, L/∆t = ~/(mL) ∼ ∞.

Expressing J(x, t) = ~
2mi(ψ

∗(x, t)∂xψ(x, t) − ψ(x, t)∂xψ
∗(x, t)), the probability

current on the ST -lattice we have,

Ĵ(x̂, t̂) =
i~

2mL

(
ψ̂(x̂, t̂)

(
ψ̂∗(x̂−L, t̂)−ψ̂∗(x̂, t̂)

)
−ψ̂∗(x̂, t̂)

(
ψ̂(x−L, t̂)−ψ̂(x̂, t̂)

))
. (7)
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Now by writing the change in R̂(x̂, t̂) = ψ̂(x̂, t̂)ψ̂∗(x̂, t̂), at location x̂ from time t̂ to t̂+∆t,

∆R̂(x̂, t̂) = ψ̂(x̂, t̂+ ∆t) ψ̂∗(x̂, t̂+ ∆t)− ψ̂(x̂, t̂)ψ̂∗(x̂, t̂),

and using (6) and (7) we get,

∆R̂(x̂, t̂)

∆t
=
Ĵ(x̂, t̂)− Ĵ(x̂+ L, t̂)

L
+
Â l(x̂, t̂)

∆t
, (8)

where, Âl(x̂, t̂) = ψ̂(x̂, t̂)ψ̂∗(x̂, t̂)− 1
2 ψ̂
∗(x̂, t̂)

(
ψ̂(x̂−L, t̂)+ψ̂(x̂+L, t̂)

)
− 1

2 ψ̂(x̂, t̂)
(
ψ̂∗(x̂−

L, t̂) + ψ̂∗(x̂+L, t̂)
)

+ 1
4

(
ψ̂∗(x̂−L, t̂) + ψ̂∗(x̂+L, t̂)

)(
ψ̂(x̂−L, t̂) + ψ̂(x̂+L, t̂)

)
. It can

be easily checked that Âl(x, t) is an infinitesimal of order L3 and thus on the ST -lattice

we have,
∆R̂(x̂, t̂)

∆t
≈ Ĵ(x̂, t̂)− Ĵ(x̂+ L, t̂)

L
, . (9)

Equation (9) on standard real time and space lines becomes ∂tR(x, t) = −∂xJ(x, t).
As a consequence of (8) and (9), even if we start with the initial condition (5), after some
time t̂ > 0 we would have, ∑

x̂∈[Z2(M∗)+1]space

L R̂(x̂, t̂) ≈ 1. (10)

If we want to interpret R̂(x̂, t̂) as a density of position states on the ST -lattice we
have to have equal sign (=) instead of ≈ in (10), in which case R̂(x̂, t̂) is not appropriate.
We resolve this problem by making a subtle point that we have an ontological wave
function,

Ψ̂ont(x̂, t̂) =

√
N̂(x̂, t̂) exp(i θ̂(x̂, t̂)), (11)

where N̂(x̂, t̂) (infinitely large) is the number of positions states at (x̂, t̂). We may assume
Ψ̂ont evolves similarly to (6) as,

Ψ̂ont(x̂, t̂+ ∆t) = Ψ̂ont(x̂, t̂)− i Ψ̂ont(x̂, t̂) +
i

2

(
Ψ̂ont(x̂− L, t̂) + Ψ̂ont(x̂+ L, t̂)

)
− i
~
v̂(x̂)Ψ̂ont(x̂, t̂)∆t. (12)

We define the density of position states, R(x̂, t̂) as,

R̂(x̂, t̂) =
N̂(x̂, t̂)

LN̂Total(t̂)
, (13)

where N̂Toltal(t̂) is the total number of position states,

N̂Toltal(t̂) =
∑

ŷ∈[Z2(M∗)+1]space

N̂(ŷ, t̂),
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and thus by definition we have, ∑
x̂∈[Z2(M∗)+1]space

R̂(x̂, t̂)L = 1.

In equation (6) note that if we take ζ̂(x̂) =

√
N̂(x̂,0)

LN̂Total(0)
exp(i θ̂(x̂, 0)) = Ψ̂ont(x̂,0)√

LN̂Total(0)
,

by comparing (6) and (12) (which are similar) at time t̂ > 0 we have ψ̂(x̂, t̂) =

√
N̂(x̂,t)

LN̂Total(0)

exp(i θ̂(x̂, t̂)) and then from comparing this and (10) we find,

N̂Toltal(t̂)/N̂Toltal(0) ≈ 1,

and therefore,

R̂(x̂, t̂) =
N̂(x̂, t̂)

LN̂Total(0)
≈ N̂(x̂, t̂)

LN̂Total(t)
= R̂(x̂, t̂).

In other words R̂(x̂, t̂) is just the normalization of, R̂(x̂, t̂), given by,

R̂(x̂, t̂) =
R̂(x̂, t̂)∑

x̂∈[Z2(M∗)+1]space
L R̂(x̂, t̂)

≈ R̂(x̂, t̂).

As we argue in section 2.3 the quantity on the ST -lattice that appears in statistical
expressions and corresponds to probability density on standard real time and space axes is,
R̂(x̂, t̂). Thus the true analogue of wave function ψ(x, t) =

√
R(x, t) exp(i θ(x, t)) on the

ST -lattice is the statistical image of Ψ̂ont(x̂, t̂) defined as,

Ψ̂stat(x̂, t̂) =

√
R̂(x̂, t̂) exp(i θ̂(x̂, t̂)) =

√
N̂(x̂, t̂)

LN̂Total(t̂)
exp(i θ̂(x̂, t̂)). (14)

For mathematical precision we need to mention some points about equation (12). First
we note that, for every point, x̂, at a fixed time, t̂, in the hyperfinite lattice we should have
either N̂(x̂, t̂) = 0 or N̂(x̂, t̂) ∈ ∗N \ N, otherwise by (12) we may encounter a rational or
infinitesimal number of position states at a later time, t̂′ > t̂ for some spatial points. Even
if we impose some conditions on initial ontological wave function such that for every x̂ in
the hyperfinite lattice we have either N̂(x̂, 0) = 0 or N̂(x̂, 0) ∈ ∗N \ N large enough, so
that at any later time (t̂ > 0), N̂(x̂, t̂) is either zero or infinite, it is not evident from (12)
that after t = 0 whether N̂(x̂, t̂) (if it is infinite) remains infinite hyperinteger number or
becomes an infinite hyperreal number. For the PBM model, equation (14) and the meaning
of N̂(x̂, t̂) as the number of position states on which particles jump after each time ∆t (as
will be explained in the next section) is fundamental. We can state some conditions weaker
than equation (12) for the mathematical existence of ontological wave function. Let us
express the following existence statement (proposition), for the existence of ontological
wave function (and subsequently the statistical wave function) on ST -lattice required
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for the PBM model,

Proposition 1. Suppose ψ̂(x̂, t̂) is defined by initial condition ζ (with (5) valid) and time
evolution equation (6) on the ST -lattice, then there exists an ontological wave function
Ψ̂ont(x̂, t̂) given by (11) and (consequently) statistical wave function Ψ̂stat(x̂, t̂) given by
(14) such that for all x̂ and t̂ on the ST -lattice, either N̂(x̂, t̂) = 0 or N̂(x̂, t̂) ∈ ∗N \ N
and also we have,

Ψ̂stat(x̂, t̂) = ψ̂(x̂, t̂) +O((∆t)α)

where α > 1 (α is real number) and O((∆t)α) is an infinitesimal term of order (∆t)α

(e.g. for any bounded values of x̂ and t̂ on the ST -lattice there exists a bounded number
k, such that |O(∆t)α| < k(∆t)α).

The above conditions are weaker than equation (12) since, in this case, N̂Total(t̂) and
N̂Total(t̂ + ∆t) may not be related at all. This can be visualized intuitively and easily
proven. Finally we should note that if ψ̂(x̂, t̂) is a function which is described in the above
statement then any ψ̂′(x̂, t̂) = ψ̂(x̂, t̂) +O((∆t)α), (where α > 1) on real space and time
lines is also valid in the Schrödinger equation and has a same image. Thus we can say
such statistical wave functions correspond to the same class of ontological wave functions.

2.3. Describing particle motion and wave function collapse as probabilistic particle jumps

In this section again, for simplicity, we present arguments using the one particle
Schrödinger equation in one dimension, but we generalize to the case of the 3 dimensional
n-particle Schrödinger equation in section 2.4. Any path a particle can take on standard
real axes (x, t), can be imagined as being produced by the assumption of the particle’s
(center of mass) jump from one point (x̂, t̂), to the neighboring points (x̂±L, t̂+∆t) on the
ST -lattice, since the speed for such a jump is infinite, VJump = L/∆t = ~/mL ∼ ∞.
Clearly, infinite speed of a particle on the ST -lattice does not necessarily mean infinite
speed on standard real lines, as the particle can be imagined as moving forward and
backward on the ST -lattice while remaining still on the standard real axis for the
finite standard real time interval. The exact way particles move on the ST -lattice is
hidden from standard real space and time lines and we have no choice but to look for the
models that lead to the same statistical results asQM on standard real time and space lines.

One natural choice to model particle jump is to assume a particle at location x̂ at time t̂
will jump randomly, after time ∆t, according to position states on each side N̂(x̂± L, t̂+
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∆t), to one of neighboring points, x̂± L,

(x̂, t̂) → (x̂± L, t̂+ ∆t).

So, if the particle is at (x̂, t̂) the probability for a jump to the right side after ∆t,
PA
(
(x̂, t̂)→ (x̂+L, t̂+ ∆t)

)
and the probability for a jump to the left side, PA

(
(x̂, t̂)→

(x̂− L, t̂+ ∆t)
)

are given by,

PA
(

(x̂, t̂)→ (x̂± L, t̂+ ∆t)
)

=
R̂(x̂± L, t̂+ ∆t)

R̂(x̂+ L, t̂+ ∆t) + R̂(x̂− L, t̂+ ∆t)
. (15)

The above probabilities guide the particle to positions where R̂ has greater values. The
particle is moving with infinite speed, randomly passing all spatial points within the wave
function, where R̂(x̂, t̂) 6= 0, at any instant of standard real time, t = st(t̂). The particle
motion according to (15) is consistent with Born’s statistical rule since, the quantity on the
ST -lattice, which statistically appears on standard real space and time lines, is R̂(x̂, t̂),
which is the probability of finding the particle at (x̂, t̂). Thus, the mean location of the
particle is found by,

xt =
∑

x̂∈[Z2(M∗)+1]space

x̂ R̂(x̂, t̂)L ≈
∫ +∞

−∞
dxxR(x, t) =

∫ +∞

−∞
dxψ∗(x, t)xψ(x, t),

and the average velocity of such distribution is found by adding the current density of all
components,

vt ≈
∑

x̂∈[Z2(M∗)+1]space

Ĵ(x̂)L

≈ ~
2im

( ∫ +∞

−∞
dxψ∗(x, t) ∂x ψ(x, t)−

∫ +∞

−∞
dxψ(x, t) ∂x ψ

∗(x, t)
)

=
~
im

∫ +∞

−∞
dxψ∗(x, t) ∂x ψ(x, t).

The average momentum is Pt = mvt ≈
∫ +∞
−∞ dxψ∗(x, t) ~

i ∂x ψ(x, t), thus the QM
position and momentum operators (X : ψ(x) → xψ(x) and P : ψ(x) → −i~∂xψ(x)),
appear naturally in the expectation values on standard real time and space lines. The
definition of the inner product as well as one particle position and momentum states on the
ST -lattice is brought in appendix A.

Clearly, in the PBM model the particles do not have paths on standard real space
and time axes (even in the relativistic domain, as will be discussed in section 3). This
resembles, the only wave view interpretations of quantum mechanics, as there is no point
on the real line where at any instant of real standard time the particle’s center of mass can
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be assumed to remain still. These considerations raise the issue of particle observation,
if the particles do not have paths on real time and space lines how do we observe them?
We should remember that in the PBM model we interpreted the probability density, as the
density of position states on hyperreal axes, which makes wave function change (collapse)
inevitable, because the particle, moving with infinite speed, is present in all split parts of
wave function (e.g. in a Stern Gerlach experiment) and only the wave function collapse
in a measurement can change the future measurement outcomes as predicted by quantum
mechanics. The Born rule states that if an observable, corresponding to a self-adjoint
operator A with discrete spectrum (λ1,λ2,...), is measured in a system with normalized
wave function ψ then; the measured result will be one of the eigenvalues λ of A and the
probability of measuring a given eigenvalue λi will equal 〈ψ|ui〉〈ui|ψ〉 = |〈ψ|ui〉|2 (where
ui is the eigenvector corresponding to eigenvalue λi).

In the following we discuss the Born rule and wave function collapse in more detail,
by considering the above rules for two different observations on the ST -lattice. Firstly
the case where observation is related to an observable with discrete and countable set of
eigenvectors on real axes and secondly, observation of particle location in which case
the eigenvectors on real axes are uncountably infinite. Now lets consider the first case,
where the observable A has a discrete and countable set of eigenvectors {u1, u2, ...}
corresponding to a set of eigenvalues {λ1, λ2, ...}. The wave function |ψ〉 can be
equivalently written in the base {u1, u2, ...} as,

ψ(x) =
∑
i

αiui(x),

where αi = 〈ui|ψ〉. Thus we have,

ψ(x)ψ∗(x) =
∑
i

|αi|2ui(x)u∗i (x) +
∑
i>j

(αiα
∗
j ui(x)u∗j (x) + cc). (16)

The wave function collapse to one of eigenvectors u1, u2, ... has two steps. First, the
position density of states (probability density) undergoes changes and the second term in
(16) (the cross terms) disappears due to decoherence (e.g. see [9] and [26]),

|ψ(x)|2 →
∑
i

|αi|2|ui(x)|2.

The decoherence takes place after a finite time, known as decoherence time, therefore
the process happens on standard real time and space axes and for this reason the above
equations were written using standard real axes. Although the second term in (16) when
summed up on the whole space line is zero (since the set of eigenvectors are orthogonal),
except in the case of wave collapse, their contributions are always present. It is as if, before
the collapse, the contribution of wave function components (αiui(x) for i = 1, 2, 3, · · · )
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to the density of position states, as supposed to be produced by their linear superposition,
becomes independent. The second and final step in collapse process is the particle jump.
After decoherence, the particle at location x̂ (at time t̂) jumps to one of the classes of
position states of neighboring sites |αi|2|ûi(x̂ ± L)|2 for i = 1, 2, ... after time ∆t, which
will finish the collapse process. All other classes of position states become irrelevant, thus
the density of position states changes from |αi|2|ûi(x̂)|2 to the the unit vector |ûi(x̂)|2

immediately. From the assumptions of the PBM model the best way to model the particle
jump subsequent to decoherence is as following. The probability of getting a λ i result in
the measurement over an ensemble, when the wave function ψ̂ collapse to ûi(x̂) is finalized
by particle jumping from neighboring sites to the point x̂, is given by

P (λi|x̂) = |αi|2|ûi(x̂)|2L. (17)

Then the probability of getting λi result in the measurement over the ensemble is derived
from the above as,

P (λi) =
∑
x̂

P (λi|x̂) =
∑
x̂

|αi|2|ûi(x̂)|2L = |αi|2. (18)

The equation (17) is essential in the PBM model to ensure that particle trajectory is
continuously consistent with density of position states, such that the particle goes to the
points where position states exist (ûi(x̂) 6= 0) and are more abundant.

Now lets consider the second case, the observation of the location of a particle (with
wave function ψ) on the ST -lattice. In other words hypothetical detectors are placed
at every point on the hyperreal line to detect the location of the particle. The sum of
probabilities for detection at each point over the whole line, according to the Born rule, is
given by ∑

x̂

〈ψ̂ |̃x̂〉〈 ˜̂x| ψ̂〉 =
∑
x̂

ψ̂(x̂) ψ̂∗(x̂)L = 1,

where normalized one particle position state ṽx̂1(x̂) ≡ |̃x̂1〉 is defined in relations (A.2).
On standard real axes, this can be done by choosing a measure (for integration) to write the
above line in integral form as,

∫∞
−∞ |〈ψ|x〉〈x|ψ〉|dx =

∫∞
−∞ dx |ψ(x)|2 = 1. For this case

(position detection) we can also examine the formula (17). The probability of observing
the particle at point x̂1 due to the collapse of the wave function which is finalized by the
particle jump from neighboring sites to point x̂, is given by

P (x̂1|x̂) = |〈̃x̂1|ψ〉|2|ṽx̂1(x̂)|2 L = |ψ̂(x̂1)|2δ1(x̂− x̂1)L2,

where δ1(x̂− x̂1) (the delta Dirac function) is defined in relations (A.1). As expected, the
probability of getting the value x̂1, in the position measurement, is derived as

P (x̂1) =
∑
x̂

P (x̂1|x̂) =
∑
x̂

|ψ̂(x̂1)|2δ1(x̂− x̂1)L2 = |ψ̂(x̂1)|2 L.
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In the PBM model the particle traces in trace chambers can be attributed to continual
wave function collapses (localization). The distance between each of two subsequent
collapses is approximately equal to the group velocity of the wave packet multiplied by
the decoherence time.

For the PBM model the question which remains is, at which level of decoherence the
collapse happens and how. In the existing collapse theories (e.g. [18], [16] and [23])
the Schrödinger equation is supplemented with additional nonlinear and stochastic terms
(with phenomenological parameters) which localizes the wave function in space. For
systems consisting of many particles the stochastic collapse dynamics become stronger
than the quantum dynamics via the amplification mechanism. For the PBM model we
have hidden variables (the location of particles on the ST -lattice) which can be used to
model the collapse, for example as a result of some kind of collision (as we did above in
the description of observing the location of a particle) in which case the collapse will be
stronger when the system involves more particles.

2.4. Multiparticle non-relativistic QM and identical particles At the end of this section

we generalize our one particle non-relativistic one dimensional wave equation on the
ST -lattice to the n-particle three dimensional wave equation. Let us consider the
following wave equation on standard real axes,

n∑
j=1

−~2

2mj
∇j ψ ′(~x, t) +

∑
r>j

v̂(| ~xr − ~xj |)ψ ′(~x, t) = i~∂tψ ′(~x, t), (19)

where ~x = (~x1, ~x2, ..., ~xn) is a vector in configuration space. We introduced configuration
space and time of n particles with masses m1, m2,...mn on the ST -lattice by (3). Taking
x̂ = (x̂1, x̂2, ..., x̂n), where x̂i = (x̂1

i , x̂
2
i , x̂

3
i ) and L̂ri = (0, . . . , 0, L̂ri , 0, . . . 0) (at i −

th place), r = 1, 2, 3 where L̂1
i = (Li, 0, 0), L̂2

i = (0, Li, 0) and L̂3
i = (0, 0, Li) (the

infinitesimal lengths, Li’s, were defined by (2)), in configuration space, the recursive time
evolution equation for the wave function ψ̂′(x̂, t̂) on the ST -lattice can be written as,

ψ̂ ′(x̂, t̂+ ∆t) = ψ̂ ′(x̂, t̂)− 3 i ψ̂ ′(x̂, t̂) +
i

2

n∑
i=1

3∑
r=1

(
ψ̂ ′(x̂− L̂ri , t̂) + ψ̂ ′(x̂ + L̂ri , t̂)

)
− i
~
∑
i>j

v̂(|x̂i − x̂j |) ψ̂ ′(x̂, t̂)∆t. (20)

Since, for points x̂i and x̂j , the units of measurement Li and Lj might be different, we
have to measure x̂i− x̂j with unit Li,j where Li,j = max{Li, Lj}. This is the lowest value
by which the distance between two masses mi and mj can be measured. It can be easily
shown that equation (20) on standard real space and time lines leads to (19). The jump of



International Journal of Quantum Foundations 9 (2023) 146

n particles in this case can be characterized by a single jump in configuration space, from
one point x̂ = (x̂1, x̂2, ..., x̂n) , after time ∆t, to one of its neighboring points x̂′ ∈ S(x̂),

S(x̂) = {x̂′ | x̂′ = (x̂1±L̂r11 , x̂2±L̂r22 , ... , x̂n±L̂
rn
n )}, ri = 1, 2, 3 and i = 1, 2, ..., n.

The set of neighboring points, S(x̂), has a total number of 6n points. The jumping
probability, analogous to (15), in this case, is given by

PA
(

(x̂, t̂)→ (ŷ, t̂+ ∆t)
)

=
R̂ ′(ŷ, t̂+ ∆t)∑

x̂′∈S(x̂)
R̂ ′(x̂′, t̂+ ∆t)

, ŷ ∈ S(x̂). (21)

The inclusion of spin in the waves equation is straightforward and can be done, but it is
ignored it in section.

Identical particles

The statement about the non-relativistic wave function of n identical particles,
ψ(~x1, ~x2, ..~xn), is that, the dynamics of the system at any given moment of time is
independent of any permutation of particle positions. This condition in Born statistical
interpretation of QM is written as,

|ψ(~x1, ~x2, ..~xn)|2 = |ψ(π(~x1, ~x2, ..~xn))|2 (22)

In Bohmian mechanics if (22) is satisfied, the guiding wave equations also satisfy the
above condition about the dynamic of the system. The same is true in the PBM model in
which the jump probability (21) is independent of any permutation of particle positions,
if (22) is satisfied. The result of (22) is that the wave function is either symmetric or
antisymmetric depending on whether or not, two (or more) particles can be in the same
position at any given moment of time.

3. Relativistic Extension

In this section we want to discuss the relativistic extension of the non-relativistic PBM
model, we presented in the previous section. In the extension of Bohmian mechanics to
special relativity, the need for preferred foliation (to define simultaneity) arises for the case
of guiding equations of a multi-particle system, since the Bohm velocity for each particle
not only depends on the wave function but also on locations of all other particles at the
same time. In the PBM model we have the same need for defining simultaneity because
the non-local nature of motions of n particles, described as a single jump in configuration
space, is evident from the probability formula (21), which depends on the locations of
all particles at a given time. For simplicity, in this paper, we assume the flat foliation
of Minkowski space is introduced by a preferred Lorentz frame of reference where the
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simultaneity is defined.

Thus, the next step would be to define the ST -lattice. Once defined, the Dirac wave
equation of single particle,

βmC2ψ(~x, t)− i~C
3∑

n=1

αn∂xnψ(~x, t) = i~∂tψ(~x, t),

can be made discrete using infinitesimals L ≈ 0 and ∆t ≈ 0 as,

ψ̂(x̂, t̂+∆t)−ψ̂(x̂, t̂) = −i βmC
2∆t

~
ψ(x̂, t̂)−C∆t

2L

3∑
r=1

αr(ψ̂(x̂+L̂r, t̂)−ψ̂(x̂−L̂r, t̂)),

(23)
where x̂ = (x̂1, x̂2, x̂3), L̂1 = (L, 0, 0), L̂2 = (0, L, 0) and L̂3 = (0, 0, L). The jump
probability (analogous to (21)) for a single particle, described by the Dirac equation, is
given by

PA
(

(x̂, t̂)→ (x̂± L̂i, t̂+ ∆t)
)

=
ψ̂† ψ̂|

(x̂±L̂i,t̂+∆t)∑3
i=1(ψ̂† ψ̂|

(x̂+L̂i,t̂+∆t)
+ ψ̂† ψ̂|

(x̂−L̂i,t̂+∆t)
)
. (24)

The main question which remains here is, the relation between L and ∆t, the answer to
which lies in the way we assume the particle moves .

One approach for this is to use the uncertainty principle, as done in the previous
section, applying relativistic relations (e.g. m(LR

2/∆τ)/
√

(1− (LR/∆τC)2) ≥ ~)
to define the relationship between LR, ∆tR (the maximum of ∆τ ) and m, (which is
(∆tR)2 = L2

R/C
2 + m2 L4

R/~2). The result of this view is that the particle moves with
speed C minus an infinitesimal value (VJump ≈ C). Thus, on real standard time and space
axes, particles move with speed C and therefore have paths on real space and time lines
(similar to BM). However, as we discussed before, because of finite speeds for particles
we need the assumption of the quantum equilibrium hypothesis in order to be consistent
with Born’s statistical rule. Thus, with this approach, we may end up with another version
of Bohmian mechanics which should have the quantum equilibrium hypothesis as a
principle.

The second approach to define the space and time hyperfinite dimensional lattice, which,
in this section, we consider as the appropriate way to extend PBM to the relativistic domain,
is to assume that particles move with infinite speed in the preferred frame of reference.
Although this seems to contradict special relativity, what we argue here is that: all the
relativistic effects we perceive in our devices when measuring time, length, energy etc., is
due only to consistency of the wave equations with special relativity on real standard space
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and time lines and not due to consistency of particle motions with special relativity. To
define PST -lattice for the preferred frame, according to what is explained, it is sufficient
to choose a relationship (between L and ∆t) which indicates infinite speed for a particle.
The relationship (2) we used in the non-relativistic case has this property. Thus by inserting,

L ≈ 0, (∆t) =
mL2

~
,

into (23) we derive,

ψ̂(x̂, ˆt+∆t)−ψ̂(x̂, t̂) = −i β m
2C2L2

~2
ψ̂(x̂, t̂)−mC L

2 ~

3∑
r=1

αr(ψ̂(x̂+L̂r, t̂)−ψ̂(x̂−L̂r, t̂)).

(25)
By assuming infinite speed for particles, although they have paths on the space time

hyperfinite dimensional lattice of the preferred Lorentz frame, they may not have paths on
all standard real time and space lines of Lorentz frames. The space and time hyperfinite
dimensional lattice of the preferred Lorentz frame, PST -lattice , is unique in the sense
that, it can only be defined for the preferred Lorentz frame and where space and time
position states are defined. All Lorentz frames at each instant of real standard time
perceive the presence of the particle on all of those position states that are observable,
which is the Lorentz transformation of wave function in the preferred frame of reference.
The tail speed of wave function ψ̂ on real standard time and space lines of the preferred
Lorentz frame (and any other Lorentz frame) is equal to C, although on the PST -lattice

some infinitesimal values spread with infinite speed ~/mL. The jumping probability
for a single electron is given by (24) where L and ∆t are replaced by (2). The PBM
model, as an ontological wave collapse theory, has a straightforward solution for the
causality problem (related to the wave function collapse) given by preferred foliation.
For any space like entangled measurement there is always a sequence of events (cause
and effect) which is determined by preferred foliation. The well known example is the
measurement of spins of two entangled particles, with zero total spin, by two space like
apart observations (observers). Different Lorentz frames disagree on which observer (in
the spin measurements) has done the observation first (consequently causing wave function
collapse). In the PBM model this issue can only be resolved in the preferred frame of
reference (preferred space-time foliation). Although, similar to the preferred space-time
foliation itself, the sequence of such events is unobservable.

For the motion of photons according to relation (2) one should assume an infinitesimal
rest mass for photons, in which case the ratio of infinitesimal length of photons motion
to infinitesimal length of motion of any other particle with real non zero mass would be
infinite. For example assuming the relation mp = (C2/G)Lp (where G is gravitational
constant) between mass of photon and its infinitesimal length of motion, then by (2) we
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get Lp = ((G~/C2)∆t)
1
3 . In this case it seems the appropriate choice for field equations

(for motion of photons) would be Proca field equations with infinitesimal mass (which then
should be expressed on the PST -lattice). As we know, relativistic wave mechanics (e.g.
Dirac equation) can not account for the problems of negative energy presence and also
particle-anti particle creation and annihilation. For example, a one particle wave function,
which is initially localized in the bonded region of space, is a combination of positive and
negative energy components. Even if we start from a wave packet composed of positive
energies, the negative energy components will appear, leading to so called Zitterbewgung
oscillations. Thus, the positive energy states are always accompanied by negative energy
states. These issues are resolved in QFT where for example Zitterbewgung oscillations
are attributed to spontaneously forming and annihilating electron-positron pairs. In QFT
one uses the extended modes (plane waves), which are solutions of free wave equations.
In the PBM model the elements of Fock space (plane waves) can well be described
and conceptually attributed to particles as further explained in Appendix A. One of the
important features of QFT is locality; the statistics for measurement in one space-time
region do not depend on whether or not a measurement has been performed in a space like
related second space time region. In PBM extension to relativistic wave mechanics, as we
saw, the wave function tail speed on standard real axes is C, which shows its consistency
with the locality condition. We have brought an extra part in Appendix B on discussion
about particle and field ontologies in QFT and the PBM model .

4. Discussion

In this paper, we constructed an ontological interpretation of quantum mechanics which
takes both particles and wave functions as objective realities. It gives the two objects
(wave function and particles) simple and related meaning. One object, wave function,
carrying information about density of position states which propagates like a wave in
configuration space and the other, the particles, is what occupy these position states. Here
some similarities and differences of the PBM model with some other interpretations of
QM such as Bohmian mechanics, objective collapse theories, many-worlds interpretation
and Copenhagen interpretation, will be discussed.

Bohm interpretation versus PBM
PBM and BM are both hidden variable theories which have a lots of similarities in their
theoretical construction, but in the end PBM is a kind of spontaneous collapse theory
while BM does not need collapse postulate for the solution to measurement problem
(although it leaves the issue of empty waves). Therefore despite their names PBM and
BM belong to two different categories of Quantum interpretations. As Bell has shown
(e.g. see [5]), any hidden variable interpretation of QM is non-local, which means infinite
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speed (correlations) is embedded in hidden variable theories whether or not particles have
trajectories consistent with newtonian mechanics (and special relativity for high energies).
In BM we have trajectories on real space and time lines, at the cost of extra assumption
(Quantum equilibrium hypothesis) and thus there is no need for collapse postulate. In the
PBM model the assumption of infinite speed for particles on the hyperfinite dimensional
lattice and jumping probability relations are replaced with quantum equilibrium hypothesis
and guiding equations of BM. With the assumption of infinite speed, the distinction
between spatial extension of wave and particle traces at each instant of real time, is lifted,
which necessarily makes the PBM model, a wave function collapse theory. Some may
consider the fact that BM is free of collapse postulate as its advantage over objective
collapse theories but apart from this and from the theoretical and ontological points of
view, as a hidden variable theory, PBM has the advantage of having a simple and purely
probabilistic ontology compared to BM ontology which has a more complicated structure
(a combination of both probabilistic and deterministic processes).

Objective collapse theories and PBM

One of the ideas which has been formulated in response to explain how the definite
outcomes appear after quantum measurement instead of their superposition as predicted by
the QM , in another word how the classical world emerges from QM , is to recognize wave
functions as every thing that is needed to interprets the quantum theory via spontaneous
collapses. The existing models of this type, GRW theory, [18], as well as all subsequent
developments (e.g. [16] and [23]) are phenomenological attempts to model the collapse
process. The main problem in such collapse theories is whether they can be made
compatible with relativistic requirements or not. The existing models are not compatible
with relativity and although some attempts have been made, the final answer to the
question is still unknown. The difficulty is how to combine the nonlocal character of
the collapse, which is necessary in order to make it compatible with the experimentally
verified violation of Bell inequalities, with the relativistic principle of locality. Further
investigations, [15] and [17], have shown the formal structure of these theories is such that
it does not allow, even conceptually, to establish cause-effect relations between space-like
events. PBM is a new objective collapse theory. It has some features which do not
exist in previous models. Firstly it incorporates particles with trajectories (on hyperfinite
dimensional lattices and not on real space-time axes). The existence of hidden variables,
the location of particles on the ST -lattice, in the PBM model, might be used to model
instantaneous wave reduction. Secondly it should be noted that non-locality is embedded
in the PBM model, as for example the jumping probabilities for particles (relations (21))
are non-local and also the model has a preferred space-time foliation. These considerations
in the PBM model makes the non-local nature of collapses compatible with the locality
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principle of QM . The preferred space-time foliation (PST -lattice) can determine the
sequence of collapses related to space like entangled systems and although this sequence
is non-observable (similar to preferred foliation itself which can not be realized on real
standard axes), the principle of causality is preserved.

Many-worlds interpretation of QM versus PBM
PBM is in contrast with the many-worlds interpretation in two important aspects. First,
unlike the many-worlds interpretation where wave function never collapses, in PBM one
should assume wave function reduction. Secondly, unlike the many-worlds interpretation,
the PBM model is a hidden variable theory, describing a single history. The advantage
of Many world interpretation over BM and the existing collapse theories is its simplicity
and its compatibility with relativity. The collapse postulate and world branching have
a more or less equivalent role in their related interpretations. In this respect, PBM is
even more similar to many world interpretation as it is able to model instantaneous
localization (without any side effects) on real time and space lines. The PBM model
also has a simple ontology which is close to conventional formalism of quantum mechanics.

Copenhagen interpretation versus PBM
Copenhagen interpretation has some interesting similarities with the PBM model, such
that one can say PBM completes Copenhagen interpretation by resolving its main problem
which is the subjectivity of observation. Copenhagen interpretation asserts that particles do
not have positions and momentums before the measurement. This is also true in the PBM
model since, before the wave function reduction, particles do not have specific locations on
standard real space and time axes. However, in PBM, as a hidden variable theory, particles
positions and trajectories exist in hyperfinite dimensional space and time lattice, hidden
from our measuring devices (which work only on real-space time axes). Copenhagen
interpretation has difficulties in defining exactly what is the observer and what is the
system observed. Thus it encounters paradoxes like Schrödinger cat. The PBM model,
however, as an objective collapse theory is free of such paradoxes. Despite paradoxes and
lack of consensus about all aspects of the model, the Copenhagen interpretation is still one
of the most popular quantum interpretations among physicists in regard to thinking about
quantum phenomena [27]. Resolving its shortcomings within a consistent logical frame
work (like PBM), even if it does not lead to any new result on standard real axes, is still
valuable from a pedagogical point of view.

At the end the choice between different interpretations ofQM is a matter of taste unless
some new experimental findings support for example BM or objective collapse theories,
giving them advantages. The criterion on hand now is that the interpretation is complete
and free of contradictions. One may criticize that the PBM model relies on hyperreal
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numbers, which are historically considered as ideal elements (e.g. abstract notions that
are useful as tools but do not correspond to anything real in the outside world). For
this we should remember that the quantum mechanics is at the center of the science of
physics, to understand it the well-known many world interpretation assumes the existence
of parallel universes, so it should not be strange to use methods based on the assumption of
the existence of infinite and infinitesimal values (of speed, length, time and etc.) in nature,
for this end.

Appendices

A. Position and momentum states

Here we consider defining one particle position and momentums states and their
orthogonality conditions on ST -lattice. Since, in the PBM model, R̂(x̂, t̂) ≈ R̂(x̂, t̂)

is interpreted as the density of position states, the square integrability condition (10)
for R̂(x̂, t̂) = ψ̂∗(x̂, t̂)ψ̂(x̂, t̂) is important, but, as we know the conventional quantum
position and momentum states, |x0 >= δ(x− x0) and |p >= (1/

√
2π~) exp (ip x/~), are

not normalizable on real standard axes. The matter can be resolved in NSA by introducing
one particle position and momentum states on the hyperfinite dimensional lattice,|̃x̂ > and
|̃p̂〉, which satisfy (10). Although such states do not have analogous value on real line axes,
they can be considered equivalent to conventional system of |x〉 and |p〉 states, which obey
Dirac orthogonality conditions. We explain this further below.

The inner product can naturally be defined on the ST -lattice as,

< f̂, ĝ >= L

N∗l0∑
x=−N∗l0

f̂∗(x̂)ĝ(x̂),

and the analogous value on the standard real axis is,

< f, g >= st
(
< f̂, ĝ >

)
.

The momentum and position operators on the ST -lattice are naturally defined as,

Pψ̂(x̂) = −i~ (ψ̂(x̂+ L)− ψ̂(x̂)/L), Xψ̂(x̂) = x̂ψ̂(x̂).

The relationship st([P,X] ψ̂(x̂)) = −i ~ (stψ̂(x̂)) ensures the commutation relation
between position and momentum operators on the standard real axis. As explained before,
momentum is a wave property thus the momentum line can become discrete through
infinitesimal spacing ∆p defined by the De-Broglie relation, p = h/λ, which comes from
wave equation solutions on the real axis (for similar treatments e.g. see [1] and [2]),

∆p = h/λmax = h/(2N∗l0) = π~/(N∗l0).
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Thus the momentum space is given by,

[Z2(M∗)+1]Momentum = {−N∗ (
π~
l0

), · · · , −π~
N∗l0

, 0,
π~
N∗l0

, · · · , N∗ (
π~
l0

)},

The length of momentum line is equal to (2N∗)π~l0 = h
L . Since on real axes we are

unable to define square integrable single particle position and momentum states, the
normalization condition is changed using Delta Dirac distribution. This procedure can be
represented on the ST -lattice as,

Dirac formalism for position and momentum states and orthogonality conditions:

δ1(x̂) =

 1
L if x̂ = 0,

0 if x̂ 6= 0.
, δ2(k̂) =

N∗l0
π~ if k̂ = 0,

0 if k̂ 6= 0.
,

|x̂ > ≡ v̂x̂(x̂′) =

 1
L if x̂′ = x̂,

0 if x̂′ 6= x̂.
, |p̂ > ≡ ûp̂(x̂) =

exp( ip̂ x̂~ )
√

2π~
,

< v̂x̂, v̂x̂′ >= δ1(x̂− x̂′), < ûp̂, ûp̂′ >≈ δ2(p̂− p̂′),

< x̂|p̂ > =< v̂x̂(x̂′), ûp̂(x̂
′) >= ûp̂(x̂) =

exp( ip̂ x̂~ )
√

2π~
,

ψ̂(x̂) =
∑

x̂′∈[Z2(M∗)+1]space

L ψ̂(x̂′) v̂x̂(x̂′),

ψ̂(x̂) ≈
∑

p̂∈[Z2(M∗)+1]momentum

(∆p) ĝ(p̂) ûp̂(x̂). (A.1)

On the ST -lattice we are able to define normalizable position and momentum states
for a single particle, |̃x̂ > =

√
L |x̂ > and |̃p̂ > =

√
∆p |p̂ >. Such states can only be

defined on the ST -lattice and the values related to such states vanish on standard real
space and time lines.

One particle normalized position and momentum states,

|̃x̂ > = ṽx̂(x̂′) =

 1√
L

if x̂′ = x̂,

0 if x̂′ 6= x̂.
|̃p̂ > = ũp̂(x̂) =

exp( ip̂ x̂~ )
√

2N∗l0
,

< ṽx̂, ṽx̂′ >= δ̃x̂,x̂′ , < ũp̂, ûp̂′ >≈ δ̃p̂,p̂′ ,

|̃x̂ > =
√
L |x̂ > =

√
l0
N∗
|x̂ >, |̃p̂ > =

√
∆p |p̂ > =

√
π~
N∗l0

|p̂ >,
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<̃ x̂|p̂ > =
√
L∆p< x̂|p̂ >,

ψ̂(x̂) ≈
∑

p̂∈[Z2(M∗)+1]Momentum

√
∆p ĝ(p̂) ũp̂(x̂),

ψ̂(x̂) =
∑

x̂′∈[Z2(M∗)+1]space

√
L ψ̂(x̂′) ṽx̂(x̂′). (A.2)

where δ̃x̂,x̂′ is Kronecker delta (δ̃x̂,x̂′ is equal to 1 if x = x′ and otherwise zero) on the
space lattice and similarly δ̃p̂,p̂′ is Kronecker delta on the momentum lattice line.

B. Quantum field theory and PBM interpretation

The PBM model for particles and waves is consistent with the elements of the Fock
space of QFT , as mentioned earlier. There has been debate over particle or field ontology
or neither of them for QFT (e.g. see [21] [28], [22], [19], [3], [12], [14] and [4]). Particle
ontology of QFT is, for example, based both on findings that charge and mass etc. are
discrete and in addition observation of particle traces in bubble chambers. The fact that
the Fock space is discrete and the particle number operator is well defined (e.g. for
non-interacting fields) suggests one to one correspondence between particles and elements
of the Fock space [28]. Nevertheless, different arguments have been presented against
particle ontology, which can be divided into three parts, identity, unitary inequivalent
representations and localizibility which we briefly re-examine here using the PBM model.

1- Identity and individuality

Although particles are countable, this characteristic alone is not enough to define a
particle; it seems one also needs individuality. There are arguments over individuality of
identical particles, as they are indistinguishable. This problem has its roots in QM which
is extended to QFT . In the PBM model particles are distinguished on the ST -lattice

since they all have distinct paths but based on the assumption of particle infinite speed
in the ST -lattice , the particles on the real space time axes become indistinguishable.
The BM model, which assumes trajectories for particles, takes the particle traces in
trace chambers as evidence of particle individuality. This is also true in the PBM model
but through a different process of continual wave function collapses where particles go
through every collapsed wave as discussed in 2.3, but this brings us to another problem
which is localizibility.

2- Unitary inequivalent representations
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The argument over occurrence of UIRs is against both particle and field ontology,
by way of questioning the use of Fock space for interacting field theory. While, in
non-interacting fields, the particle number operator is well defined and free fields can be
equivalently described with Fock space, it is not true for interacting fields. As Haag has
shown (see [19]) free fields and non-interacting field theory are unitarily inequivalent. The
particle number operator can not be defined at any stage in interacting field theory. This
creates problems for particle ontology, which assumes correspondence between elements
of Fock space and particles, in addition to field ontology, since functional field theory
is unitarily equivalent to Fock space. For this reason Bain, in [3], suggested that only
asymptotically free states, i.e. states very long before or after a scattering interaction,
have a Fock representation that allows for an interpretation in terms of countable quanta.
This suggestion is rated by Fraser, in [14], as an unsuccessful last final attempt to save
a quanta interpretation of QFT because it is ad hoc and can not even show that at least
something similar to the free field total number operator exists for finite times, i.e. between
the asymptotically free states. Bain, in [4], points out that the reason why there is no
total number operator in interacting relativistic quantum field theories is that this would
require an absolute space-time structure. Taking the above into consideration, we suggest
the following solution for this problem within the PBM framework. As is known when
we look at smaller and smaller length scale (thus more energy and equivalently smaller
time intervals) in QFT , due to the uncertainty principle, more and more intermediate
particles (as well as various outcomes) appear in Feynman diagrams. In PBM model one
can assume beyond any energy cut off of renormalization and thus beyond any finite time,
there are infinitesimal time intervals (before and after interactions) where particles are
only described by free fields. In other words, we admit that Fock space is a privileged
representation since on the hyperfinite dimensional lattice, particles are described by free
fields, except for the times where interactions are taking place.

3- Localizibility

There are several results concerning the impossibility of particle localization in QFT
one of which is the Malament result ([22], [20]) which formulates a no-go theorem to
the effect that a relativistic quantum theory of a fixed number of particles predicts a
zero probability for finding a particle in any spatial set, provided four conditions are
satisfied, namely concerning translation covariance, energy, localizibility and locality. The
Malament localizibility condition asserts that, a particle can not be found in two disjoint
spatial sets at the same time. There have been several criticisms of the conclusion from
the Malament theorem, one of which is that it assumes a fixed number of particles (only
valid for free fields). Even though, until now, such results about non-localizibility in QFT
can not be considered complete in order to rule out particle ontology of QFT , they can
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reflect the difficulty in accounting for localizibilty in the QFT framework. In the PBM
model a particle can not be found in two disjoint spatial sets at the same time on the
ST -lattice. However, this is not true on real standard axes because of infinite speeds
and there is a possibility of finding a particle in two disjoint spatial sets at the same time
on standard real axes. In other words, the definition of particles in the PBM model does
not satisfy the Malament Localizibilty condition. Taking into consideration the above
results about non-localizibility of QFT for free fields, a conclusion can be drawn for
PBM that; the localization, which is the same as wave function reduction (collapse), is
a phenomenon which happens on hyperreal time and space axes. As a result the wave
function collapse in PBM is something beyond both QM and QFT which are defined
and observed on real space time axes. In fact, the decoherence (which is the first step in
the collapse process) can naturally be explained by QFT (for example, heat exchange in
the environment leads to the leaking of quantum information), but the final step, which
is the random particle jump that finalizes the collapse, happens on hyperreal axes and
we just perceive its evidence on standard real axes (e.g. particle traces in a bubble chamber).
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