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Abstract: Collapse theories of quantum mechanics assume that quantum-events in space-

time are real phenomena. In the causal-set picture events spread stochastically, and in the 

transactional picture they are additionally accompanied by the exchange of gauge bosons. We 

base on elements of these pictures and use the emitted gauge-bosons as clocks. We show that, 

in case of exchanged photons, the synchronization of the corresponding clocks in a 

gravitational field is governed by Einstein's equations including a cosmological term Λ. 
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1. Introduction 
 

Recent years have seen the development of theories of quantum-events [1 − 5], which 

take the collapse of the state vector for a real phenomenon. The theory of causal-sets models 

events as a stochastic process [4,5], while the transactional approach additionally bases on 

interactions and connects an event to the exchange of four-momentum by gauge bosons [1,2]. 
It is beyond our means to honor all of the work done in the field, and we will use elements of 

the two above-mentioned theories. In [6]  it is shown that, if the exchanged bosons are 

photons, it is possible to use them as clocks in order to locally measure the duration of events. 

The synchronization of these light-clocks in a gravitational field leads to a dynamic space-

time metric, governed by the Einstein equations. The result makes use of the energy-

exchange, i.e. of the zero-component of the transferred four-momentum. In [7]  the 

cosmological constant Λ is brought into connection with fluctuations in the growth-process of 

causal-sets and in [8] parallels are drawn to the transfer of 3-momentum in transactions. In 

this paper we aim to show that the correct equations, which govern the synchronization of 

local light-clocks under full account of the exchanged four-momentum, are indeed Einstein's 

equations with a cosmological term.  

The article is structured as follows: in paragraph 2 we briefly introduce the interpretative 

background and the basic facts in [6], needed to formulate the main result, which we give in 

paragraph 3. In paragraph 4 we summarize, and the appendices contain related information 

about Lorentz manifolds and local gravity.         
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2. Background and Principles  

2.1. Transactions and Light Clocks 

In the transactional interpretation [1] a quantum state |𝜓⟩ is launched as an "offer-wave" 

by an emitter and gets possible responses by "confirmation-waves" ⟨𝜓𝑖|, 𝑖𝜖𝐼, which are the 

projections of ⟨𝜓| onto absorbers. The selection of a particular confirmation 𝑖0𝜖𝐼 leads to a 

"transaction" which is the actualization of emission and absorption as real events in space-

time. The specific probability for a particular transaction 𝑖0𝜖𝐼 is |⟨𝜓𝑖0|𝜓⟩|
2
. The relativistic 

transactional interpretation [2,3]  adds to this the explanation, why offer-waves (and 

confirmation-waves) are actually created. Relativistic interactions can be thought of as the 

mutual exchange of virtual bosons, creating possibilities in a pre space-time process. 

Transactions in turn, are triggered by the exchange of real bosons. The amplitude for 

emission or absorption of real bosons is the coupling amplitude between the fields. "Space-

time" thus becomes the connected set of emission-and absorption events corresponding to 

actualized transactions, which define, by the four momentum of the exchanged boson, a time-

like (or null) space-time interval whose end points are the emission and absorption events. It 

is here, where the transactional view touches causal-set theory, in which events spread in 

space-time by a stochastic Poisson-process. Boson-exchange, understood as a decay-process, 

is of Poissonian nature..1 We will in the sequel focus on the electromagnetic force and the 

related exchange of photons. Our mathematical result does not depend upon the details of 

either interpretation. They just form a background, which allows an understanding of what is 

physically going on. 

It takes a (closed and isolated) quantum system, represented by a vector in Hilbert space, 

|𝜓0⟩𝜖𝐻ℂ, with average energy 𝐸 and lowest energy-value 𝐸0, minimally a time of  

 

Δ𝑡̅̅ ̅ =
ℎ

4(𝐸 − 𝐸0)
 , 

 

(1) 

 

in order to unitarily evolve to an orthogonal state |𝜓1⟩, ⟨𝜓0|𝜓1⟩ = 0, (ℎ ≝ Planck's constant) 

[9]. We can use such a system as a clock2 with period Δ𝑡̅̅ ̅. Special interest will lie on the case, 

where a system is emitting (or absorbing) a photon of energy 𝐸 = ℎ𝜈. The corresponding 

light-clock has period (1) 

 

Δ𝑡̅̅ ̅ =
1

4𝜈
 . 

(2) 

 

We will encounter the situation, where there is not a single photon but many over a range of 

frequencies in thermal equilibrium (radiation), and where the energy is given by a 

temperature 𝑇. For oscillators with 𝐸̅𝜈 ≈ 𝑘𝐵𝑇 (ℎ𝜈 ≪ 𝑘𝐵𝑇, 𝑘𝐵 ≝ Boltzmann constant) we get 

a corresponding clock with period 

 

Δ𝑡̅̅ ̅ =
ℎ

4𝑘𝐵𝑇
 . 

(3) 

 

                                                      
1 The transactional interpretation thinks of space-time slightly different than the causal-set-approach does. This has no impact on our 

mathematical result. 
2 We actually use it as the "core" of a clock. 
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We call the special light-clock (3) a thermal clock. 

2.2. Minkowski Space-Time 

 For any photon in vacuum the ratio between its energy 𝐸 and its 3-momentum 𝑝 =
|𝑝⃗| is a constant, namely the speed of light 𝑐 
 

𝐸

𝑝
= 𝑐 . 

(4) 

 

Equation (4) is a quantum-identity and, if expressed in space-time, must hold in every inertial 

reference frame. If we write energy and momentum in space-time coordinates, we get 𝐸 =

ℎΔ𝜈 =
ℎ

Δ𝑡
 and, by the de Broglie-relation, 𝑝 =

ℎ

Δ𝑥
. Therefore (4) takes the form 

 
𝐸

𝑝
=
Δ𝑥

Δ𝑡
= 𝑐 . 

(5) 

 

Since equation (5) must hold in every inertial reference frame 𝑥̅ = (𝑡, 𝑥)𝜖ℝ4, it constrains the 

metric resulting in Minkowski space-time 𝕄4  with linear isometries 𝑂(1,3), the Lorentz 

transformations. As indicated in paragraph 2.1, we take the ontological standpoint that 

quantum-systems spontaneously break the unitary time-evolution through the exchange of 

real bosons and thus become manifest in space-time. This is what we call "events" or 

synonymously "actualizations". The kind of bosons depends upon the force in action. So we 

can think of space and time as distinct attributes of matter, represented by a four-dimensional 

continuum, which adopts its metric structure by the "sprinkling" of matter through events. 

 The concept of a thermal clock (3) unfolds its power, if we consider multiple events 

of interacting quantum-systems. Multiple events manifest themselves in space-time by 

acceleration. In 𝕄4 physical systems of constant acceleration 𝜅 in 𝑥-direction, say, can be 

expressed in Rindler-coordinates. This happens by choosing a co-moving coordinate system, 

defined in the wedge limited by |𝑥| = 𝑡, and given by the transformations  

 

𝑥 = 𝜚𝑐𝑜𝑠ℎ(𝜅𝜗), 𝑡 = 𝜚𝑠𝑖𝑛ℎ(𝜅𝜗), 𝜚 ≥ 0,−∞ < 𝜗 < ∞ . (6) 

 

The corresponding line-element is 

 

𝑑𝑠2 = (
𝜅𝜚

𝑐2
)
2

𝑐2𝑑𝜗2 − 𝑑𝜚2 − 𝑑𝑦2 − 𝑑𝑧2 . 
(7) 

  

Contrary to velocity, acceleration is not purely perspectival and cannot be transformed away 

by a Lorentz transformation. But there is a local inertial reference-frame at 𝑡 = 0, where the 

system is instantaneously at rest. Assume, that in this reference-frame there is a thermal bath 

of temperature 𝑇, and we want to gauge proper time by a corresponding thermal clock. By (3) 

and (7) we get 

 

𝑑𝜏 =
𝑑𝑠

Δ𝑡̅̅ ̅
=
4

ℎ
𝑘𝐵𝑇

𝑐2

𝜅
𝑑𝜗 . 

(8) 
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We now want to synchronize3 (8) with a quantum-clock, defined by a matter-wave with rest 

mass 𝑚0, frequency 𝜔 = 2𝜋𝜈 and corresponding acceleration 𝜅𝜔. In its respective oscillatory 

rest-frame and for 𝑚0 ≪
ℏ𝜔

𝑐2
, the matter-clock measures time in units of (8) 

 

𝑑𝜏𝜔 =
4

ℎ
𝐸𝜔
𝑐2

𝜅𝜔
𝑑𝜗 . 

(9) 

 

By the de Broglie-relation there holds with 𝑘 = |𝑘⃗⃗| denoting the wave vector 

 

𝐸𝜔
2 = ℏ2𝜔2 = 𝑐2ℏ2𝑘2 +𝑚0

2𝑐4 . (10) 

 

Further with 𝑢𝜔 =
𝜔

𝑘
 and 𝑣𝜔 = 𝑐

2 𝑘

𝜔
 denoting the phase-and group velocity, respectively, we 

have 

 

𝜅𝜔 = 2𝜋𝑢𝜔𝜔 . (11) 

 

By (11) equation (9) turns into  

 

𝑑𝜏𝜔 =
4

ℎ
ℏ𝜔

𝑐2𝑘

2𝜋𝜔2
𝑑𝜗 =

𝑐2𝑘

𝜋2𝜔
𝑑𝜗 =

𝑣𝜔
𝜋2
 . 

(12) 

 

If we synchronize the two clocks, 𝑑𝜏 = 𝑑𝜏𝜔, we therefore get 

 

4

ℎ
𝑘𝐵𝑇

𝑐2

𝜅
=
𝑣𝜔
𝜋2
 . 

(13) 

 

For the temperature 𝑇 this implies 

 

𝑇𝑘,𝜔 =
ℏ𝜅𝑣𝜔
2𝜋𝑘𝐵𝑐2

 . 
(14) 

 

Expression (14) is a generalized Davies-Unruh temperature. If we choose a massless wave 

(𝑚0 = 0), then we are in the situation 𝑢𝜔 = 𝑣𝜔 = 𝑐 and (14) turns into the familiar Davies-

Unruh formula [10,11]   
 

𝑇𝜅 =
ℏ𝜅

2𝜋𝑘𝐵𝑐
 . 

(15) 

3. Gravitation  

 Let us now consider gravitational acceleration, 𝜅 = 𝑔𝑅 , in the Newtonian limit at 

distance 𝑅 of a mass 𝑀 at relative rest. With 𝐺 denoting the gravitational constant we have 

 

𝑔𝑅 =
𝐺𝑀

𝑅2
 . 

(16) 

 

                                                      
3 By the term "synchronization" we just understand equality of periods.  
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A derivation of the gravitational acceleration 𝑔𝑅, which fits well into the context of our work, 

is explained in [12], where gravitation can be interpreted as an emerging entropic force, 

resulting from events (see appendix B).  

3.1. Energy-density 

 Let a test-system at small distance 𝑅 be actualized by exchanging photons with 𝑀 and 

feel the acceleration 𝑔𝑅. The energy-emission by the photons appears in the local rest-frame 

of the system as an emission from a heat bath in the environment. The temperature is 𝑇𝑔𝑅 (15), 

since the period of the corresponding thermal clock should be synchronized with the one of 

the corresponding light-clock (9). This amounts by (13) to the equation 

 
4

ℎ
𝑘𝐵𝑇𝑔𝑅

𝑐

𝑔𝑅
=
1

𝜋2
 . 

(17) 

   

With 𝐸 = 𝑀𝑐2, 𝑙𝑃 = √
𝐺ℏ

𝑐3
 (Planck length), and 𝐴𝑅 = 4𝜋𝑅

2 we derive from (17) 

 

𝑘𝐵𝑇𝑔𝑅𝐴𝑅 = 4𝑙𝑃
2𝐸 . (18) 

 

By using (15), we arrive at 

 

𝑔𝑅𝐴𝑅 =
4𝜋𝐺

𝑐2
𝐸 . 

(19) 

 

In the sequel we will continue to work in the local inertial coordinate-chart around the origin 

(𝑀), and develop Einstein's equations for the 𝑜𝑜(𝑡𝑡)-component. This will suffice to reveal 

the structure of the equations. The general equations can be derived, for instance, by 

assuming to work in an asymptotically flat manifold with a global time-like Killing field and 

by using generalized expressions for the terms in (19), as done in [12] (see appendix A). 

With 𝑉𝑅(𝑡) denoting the volume of a small ball of test-systems at radius 𝑅(𝑡) around the 

origin, with 𝑅(0) = 𝑅, 𝑅̇(0) = 0 and 𝑅̈(0) = 𝑔𝑅, we can re-write (19) as [13,14] 
 

𝑑2

𝑑𝑡2
|
𝑡=0

𝑉𝑅 =
4𝜋𝐺

𝑐2
𝐸 . 

(20) 

    

If we introduce the energy-momentum tensor 𝑇𝑎𝑏 with zero-component 𝑇00 =
𝐸

𝑉𝑅
, denoting 

the energy density in 𝑉𝑅, and use the local properties of the Ricci tensor 𝑅𝑎𝑏, we have at the 

origin [13,14] 
  

𝑉̈𝑅
𝑉𝑅
|
𝑡=0

𝑅→0
→  𝑐2𝑅00, 

 

(21) 

and (20) turns into 

𝑅00 =
4𝜋𝐺

𝑐4
𝑇00. 

(22) 
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3.2. Momentum-flow 

 In the transactional picture there is a transfer of four-momentum through photons 

coinciding with an event. Let us call this momentum-transfer "event-radiation". In order to 

synchronize local light-clocks (22) we have so far only made use of the energy (zero)-

component of event-radiation (9,17). From the 3-momentum there arises a pressure, which 

defines the Laue-scalar 

 

𝑇 =∑𝑇𝑖𝑖 =∑
𝐹𝑖
𝐴𝑖

3

𝑖=1

3

𝑖=1

=∑
1

𝐴𝑖

𝑑𝑝𝑖
𝑑𝑡
 .

3

𝑖=1

 

(23) 

 

This quantity also contributes to the energy (mass) density (19), (22). Let 𝑁𝑅(𝑡)  be the 

number of actualizations within volume 𝑉𝑅  at time 𝑡 . We have with 𝑥0 = 𝑐𝑡, 𝑁̃𝑅(𝑥0) =

𝑁𝑅 (
𝑥0

𝑐
) and the de Broglie-relation 𝑝 =

ℎ

𝑅
 

 

𝑇 = 3
𝑑𝑁𝑅(𝑡)

𝑑𝑡𝐴𝑅
∙
ℎ

𝑅
= 3

𝑐 ∙ ℎ

3
∙
𝑑𝑁̃𝑅(𝑥0)

𝑑𝑥0𝑉𝑅
= 𝑐 ∙ ℎ ∙

𝑑𝜆(𝑥0)

𝑑𝑥0
 . 

(24) 

 

The function 𝜆(𝑥0) =
𝑁̃𝑅(𝑥0)

𝑉𝑅
 denotes the number of events per 3-volume at time 𝑡. If we set 

Λ(𝑥0) =
𝑑𝜆(𝑥0)

𝑑𝑥0
, then Λ(𝑥0) is the change-rate of actualizations per 3-volume. We assumed 

that 𝜆(𝑥0) is constant over 3-space (i.e. in particular independent of 𝑅), which amounts to the 

homogeneity and isotropy of space with respect to actualizations.  

 We have also tacitly assumed that 𝑁𝑅(𝑡), (𝜆(𝑥0)), is a differentiable function in 𝑡. 
This is an assumption, which cannot hold in the quantum-realm, since events represent 

discrete sets and are not deterministic, but obey a random-process. The only known Lorentz-

invariant stochastic law for the spreading of events in 𝕄4, such that 𝑁𝑅~𝑉𝑅, is a Poisson-

process with constant average (photon) transaction-rate 𝜚𝛾. The homogeneity and isotropy of 

space-time are thus an immediate consequence [15]. Hence, in the above terminology we 

have for the averages (expectation values) and Δ𝑥0 > 04 

 

𝜆̅(𝑥0 + Δ𝑥0) = 𝜆̅(𝑥0) + 𝜚𝛾 ∙ Δ𝑥0 . (25) 

 

So by (25) we can define in analogy to (24) 

 

𝑇̅𝛾 = 3
𝑐 ∙ ℎ

3
∙
Δ𝜆̅(𝑥0)

Δ𝑥0
= 𝑐 ∙ ℎ ∙ 𝜚𝛾 . 

(26) 

 

If we set 𝑇 = (𝑇00 − 𝑇̅𝛾) we can complete the right hand side of (22) to 

 
4𝜋𝐺

𝑐4
𝑇00⟶

8𝜋𝐺

𝑐4
(𝑇00 −

1

2
𝑇𝛿00) . 

(27) 

 

We may alternatively shift the added amount to the left of (22), where we have by (26) 

                                                      
4 We can expect that there is a lower bound 0 < 𝑐𝑡0 ≤ Δ𝑥0. 



 

94 
International Journal of Quantum Foundations 6 (2019) 

 

 
4𝜋𝐺

𝑐4
𝑇̅𝛾 =

4𝜋𝐺ℎ

𝑐3
𝜚𝛾 = 8𝜋

2𝑙𝑃
2𝜚𝛾 . 

(28) 

 

Therefore, with 

 

Λ = 8𝜋2𝑙𝑃
2𝜚𝛾 , (29) 

 

the synchronization-equation takes the form 

 

𝑅00 − Λ𝛿00 =
4𝜋𝐺

𝑐4
 𝑇00. 

(30) 

 

Note that Λ has the dimension of 
1

𝑙𝑒𝑛𝑔𝑡ℎ2
. If matter-energy does not only stem from a static 

mass 𝑀, but from more complicated systems of relatively moving bodies, which also exercise 

pressure 𝑇, we finally get our main result by repeating the procedure in (27) 

 

𝑅00 − Λ𝛿00 =
8𝜋𝐺

𝑐4
 (𝑇00 −

1

2
𝑇𝛿00). 

(31) 

 

Under the assumption of known transformation rules, the full Einstein equations are 

equivalent to the fact that (31) holds in every local inertial coordinate system around every 

point in space-time [14].  

4. Summary  

 To derive equation (31) we have used three ideas. The first one is, that quantum-

events are real actualizations of quantum-systems in space-time and are accompanied by the 

transfer of four-momentum through gauge bosons, so called event-radiation. The number of 

events follows a Poisson-process, and the type of bosons depends on the respective force in 

action [1 − 5]. The second idea is that quantum-systems can serve as clocks (1), and that the 

rhythm of actualizations, induced by electromagnetic forces, is best measured by the light-

clocks, naturally given by the transferred photons. The third idea is that clock-periods from 

the perspective of unequally accelerated systems need to be synchronized, in order to define 

the same rhythm of time. If the acceleration is of gravitational origin 5 , then the full 

synchronization-equation turns out to be (31). The dynamic and expanding space-time of 

general relativity is hence a consequence of event-radiation and of a fixed "yardstick", 

namely the locally constant speed of light 𝑐, implicit in the light-clocks, used to measure time 

under gravitational acceleration. There is in particular no direct connection to the energy of 

the quantum-vacuum. Under the assumption of the existence of the constant Λ, it is further 

possible to derive the MOND6 corrections of gravity [7,8], [16,17].    
  Our result was derived under the assumption of a constant cosmological term Λ (i.e. 

𝜚𝛾). It is well possible that the value of Λ is in fact varying with cosmic time and only 

appears to be constant over the time periods, which we can possibly oversee. This allows the 

connection to the Hubble "constant" Λ~𝐻2, which seems to hold, given the empirical data 

and the theoretical models at our disposal today [7].  

                                                      
5 As mentioned in paragraph 3, gravitational acceleration itself can be thought to result from events (appendix B). 
6 Modified Newtonian Dynamics. 
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Appendix A  

For completeness sake we sketch the derivation of (31) directly from covariant quantities 

of a Lorentz manifold. We follow the exposition in [12]. Let there be an asymptotically flat 

Lorentz-manifold (ℳ, 𝑔) with global time-like Killing field 𝜉𝑎 and with normalized redshift-

factor 𝑒𝜑(𝜉) , where 𝜑(𝜉) =
1

2
𝑙𝑛(−𝜉𝑎𝜉𝑎)  is a generalization of Newton's potential with 

𝜑(𝜉) = 0 at spatial infinity. In such a space-time the notion of "staying in place" is well 

defined and means following an orbit of the Killing field 𝜉𝑎 with acceleration 𝑎𝑏 = −∇𝑏𝜑 =
𝑒−2𝜑𝜉𝑎∇𝑎𝜉

𝑏. The direct generalization of equation (19) is then the definition of the Komar-

mass inside a topological two-sphere 𝒮 [18] 
 

4𝜋𝐺

𝑐2
𝐸 = ∫ 𝑒𝜑∇𝜑𝑑𝐴 

𝒮

. 

A1 

 

A1 can be re-expressed by use of the Killing equation ∇𝑎𝜉𝑏 − ∇𝑏𝜉𝑎 = 0 and Stokes theorem 

[17] 
 

8𝜋𝐺

𝑐2
𝐸 = −∫ 𝑑𝑥𝑎 ∧ 𝑑𝑥𝑏𝜀𝑎𝑏𝑐𝑑∇

𝑐𝜉𝑑 = 𝑐2∫ 𝑅𝑎𝑏𝑛
𝑎𝜉𝑏𝑑𝑉 .

𝑉𝒮

 

A2 

In A2 𝑉 denotes the 3-volume enclosed by 𝒮 and 𝑛𝑎  the unit-normal. Equation (31) hence 

takes the form 

 

∫(𝑅𝑎𝑏𝑛
𝑎𝜉𝑏 − Λ𝑔𝑎𝑏𝑛

𝑎𝜉𝑏)𝑑𝑉

𝑉

=
8𝜋𝐺

𝑐4
∫ (𝑇𝑎𝑏𝑛

𝑎𝜉𝑏 −
1

2
𝑇𝑔𝑎𝑏𝑛

𝑎𝜉𝑏)𝑑𝑉 .

𝑉

 

A3 

Since there are many ways to enclose a mass 𝑀 by a surface 𝒮, the normal 𝑛𝑎 can be varied. 

In order to vary 𝜉𝑏  one can look at arbitrary small space-time regions, which look 

approximately like Minkowski space and chose approximate Killing vectors. Under the 

assumption that, if matter crosses the screen, then the Komar-integral A1 changes by exactly 

its mass 𝑚, A3 holds for every such Killing vector and region. Hence A3 holds for the 

integrand and we have 

𝑅𝑎𝑏 − Λ𝑔𝑎𝑏 =
8𝜋𝐺

𝑐4
(𝑇𝑎𝑏 −

1

2
𝑇𝑔𝑎𝑏) . 

A4 

The approach is similar to [19], where light-like vectors 𝑘𝑎, 𝑘𝑏 are considered in place of 

𝑛𝑎, 𝜉𝑏. A general exposition with detailed calculations can also be found in [20].  

Appendix B  

 The open point is, where the Newtonian acceleration 𝑔𝑅 =
𝐺𝑀

𝑅2
 in (16) stems from. 

There is a derivation of 𝑔𝑅  in [12], which fits very well into our model of an emerging 

empirical space-time. If a particle with mass 𝑚 and some "central" mass 𝑀 come into being 

by a transaction, at relative rest and distance 𝑅 of each other in locally flat space-time, there 
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is a reduction of entropy in quantum space-time Δ𝑆 , which must be equalized. We can 

assume this information to be one elementary bit connected to the existence or non-existence 

of the particle. We assume a holographic principle, namely that the information contained in 

a ball of radius 𝑅 around 𝑀 is actualized on its surface, and that a bit of information is part of 

the surface-information, once it is at a distance of its Compton length 𝜆 =
ℏ

𝑚𝑐
 from the 

surface [12,21].7 This holds, because structureless particles can reasonably be supposed to 

have the size of their Compton-length. Further assume that entropy changes linearly with the 

distance to the surface   

Δ𝑆 = 2𝜋𝑘𝐵
𝑚𝑐

ℏ
Δ𝑥. B1 

For the energy on the surface, corresponding to the total energy within the ball, we have 

𝐸 = 𝑀𝑐2 =
1

2
𝑘𝐵𝑁𝑇. 

B2 

The number 𝑇 is the surface-temperature and 𝑁 denotes the number of bits on the surface, for 

which we get by the holographic principle and the Planck-length 𝑙𝑃 = √
𝐺ℏ

𝑐3
 

𝑁 =
𝐴𝑅

𝑙𝑃
2 =

4𝜋𝑅2𝑐3

𝐺ℏ
. 

B3 

 By B2 and B3 we get for the surface-temperature 𝑇 

𝑇 =
𝑀𝐺ℏ

2𝜋𝑅2𝑘𝐵𝑐
. 

B4 

For the total energy-change on the surface we have the entropic-force equation  

Δ𝑆 ∙ 𝑇 = 𝐹 ∙ Δ𝑥. B5 

By plugging B1 and B4 into B5, we arrive at 

𝐹 = 𝐺
𝑀𝑚

𝑅2
= 𝑚𝑔𝑅 . 

B6 

Therefore, one can think of local gravitational acceleration as a kind of "osmotic pressure" 

towards the other emerging parts of space-time. Local gravity thus becomes a consequence of 

light-induced events, the second law and a holographic principle. 

 

                                                      
7 By symmetry we could also choose 𝑚 to be the "central" mass. 
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