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Non-relativistic quantum physics is formulated in Galilean space-time and, 
accordingly, the intuitions behind the notion of time are drawn from the structure of a 
Galilean world. Galilean space-time admits a universal time parameter and a foliation 
into space-like simultaneity hyper-surfaces, which define a universal time-order. In
addition every process takes some period of time ��, its duration, and this duration
stays the same, if the identical process is repeated. These are two fundamental aspects 
of time and in Galilean space-time both are independent of the location or uniform 
movement of a clock1 measuring them. This is different in Minkowski space-time, 
which is the result of the empirical fact that the speed of light, �� is invariant under 
boosts, i.e. independent of the velocity of a light-source � . In Minkowski space-time
it is impossible to define simultaneity, and even future and past outside of the light-
cone, independently of the movement of a clock. Duration on the other hand can still
be invariantly defined via the notion of “eigentime” �. However, � is not universal 
anymore. A lot of work has been done on the topic of simultaneity, which is a bone of 
contention between the presentist and the eternalist world-view � . While relativity 
theory clearly favors the eternalist view, the by now experimentally well-established 
quantum non-separability is hard to reconcile with it � . H. Poincaré says in an essay
� that the simultaneity of events and the equality of duration might be mere 

conventions. As mentioned, most focus has since been laid on the question of 
simultaneity, while duration has seemed to be less problematic. We think differently 
and will show that, while quantum physics enforces a discussion around simultaneity,
it also enforces one around duration, which has profound consequences and even 
helps to clarify the first discussion.
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Non-relativistic quantum physics is formulated in Galilean space-time, but the laws 
governing the dynamics of matter are distinctly different to Newton’s laws or their 

1 We do not enter into the question what kind of device a clock really is.
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relativistic extensions. There is a complex-valued function � �� � , called wave 
function, which assigns to a matter-entity2 the probability to be in a specific space-
volume ���around an event �� � in space-time

����� ���� ���� �� � ����� ���� �� ���� �� �� ��, (1)
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The dynamics happens in two different ways. There is an evolution of the wave 
function, governed by the Schrödinger equation

��
�

��
� �� � � �� �� �

(2)

� �� � � ���

� denotes a positive semi-definite operator (Hamiltonian) on the space of wave 
functions. This equation determines the evolution of the probability density (1). The 
wave function does not live in space-time but in an abstract function-space and its 
arguments reside in a high-dimensional configuration space, only different from 
physical space though, if two or more matter-entities are in scope. The probability 
densities (1) are covariant under Galilean-boosts, � � � � ��� � � �� and hence 
Galilean space-time is consistent with the theory of matter so far. 

Any interaction of a matter-entity, represented by φ, with another matter-entity is 
described by a Schrödinger equation. This holds in particular for an interaction with a 
measurement apparatus �. Assume there is an apparatus �, which is also described by 
a vector in some abstract space, having a pointer-basis ������� with �� denoting “no 
position measurement done“ and �� corresponding to “the matter-entity detected at 
point �“. There is some interaction Hamiltonian �� such that we can formalize the 
measurement process in the spirit of (2) by

��� ��

��

��
�

� �� � �� �
(3)

Equation (3) leaves the matter-apparatus system in a non-definite superposition of 
mutually orthogonal states. This is not what we observe and it is here, where the 
second kind of dynamics enters the stage, namely the collapse. Traditional quantum 
physics postulates that at some point in the process there is a discontinuous collapse,
which reduces the matter-apparatus system to a distinct state ���� � �� � �� �

The theory of matter outlined so far describes the random appearance of matter-
entities caused by measurements in physical space at time �. It does not say anything 
about what matter does “in between” measurements, since the evolution of the wave 
function does not live in physical space but in an abstract function space. Of course, 
the theory also says something about the measurement of physical properties other 

2 We use the term “matter-entity“ for matter without specification of an ontology.
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than position.3 Since we are interested in the structure of space and time, the other 
property of interest is momentum. Values of physical properties are eigenvalues of 
self-adjoint operators, which act on the wave-function �. The position-operators are
the multiplication-operators �� � � �� � �� � � � � ���and the spectrum consists of
the elements � � �. The momentum-operators turn out to be �� � � ���

�

���

�� � �

� � �, with the same spectrum. The corresponding values are empirically found by
measurements. We note, that the universal time parameter � is not on equal footing 
with position or momentum, since there is no operator, which could account for it, as 
there cannot exist a self-adjoint time-operator that is canonically conjugate to a 
Hamiltonian having a semi-bounded spectrum � �

The traditional interpretation (Copenhagen) assumes the apparatus � to be a 
macroscopic system. In our context it might be any system with which a matter-entity 
interacts, as long as the interaction results in a measurement (3) � . We have so far 
not specified a matter-ontology and used the term “matter-entity“ for a system 
represented by a wave function �. Quantum theory is general enough to support 
different ontologies. We can think of matter-entities being particles, like in classical 
physics.4 The wave function, however, also lends itself to an ontology where a matter-
entity is somehow “smeared“ out as a matter-density in the whole of space and gets 
localized by measurement � . Just assume there is an experiment with two detectors 
at two different, spatially separated wings. Before the measurement there is matter 
density on both wings but as soon as the detector on either of the wings fires (i.e. the 
state collapses), there is nothing on the other side anymore. At the moment of firing 
there is a kind of instantaneous influence between the two wings. This is an example 
of non-separability, which has been tested in various experiments with two or more 
entangled matter-entities ������ ��It cannot be explained by common causes, 
localized in the past, nor can it be used to send signals �� ����� � . What it does,
however, is to naturally define a simultaneity hyper-surface. Hence Galilean space-
time with its unique foliation into simultaneity hyper-surfaces is a good structure to 
harbor the collapse of an entangled system. At the same time the existence of these 
hyper-surfaces is hard to reconcile with relativity � .

Differently to the situation in classical physics, we also know that a measurement 
does not only discover already existing values of physical properties but does in a way 
create them by the context of the measurement �� . The role of the observer 
���� is hence crucial in quantum physics. In the same spirit not all physical 

properties can together be exactly measured, which is also a marked difference to a 
classical theory of matter. Particularly position and momentum form an 
incommensurable pair of properties. This is the content of another defining postulate 
of quantum physics, namely the canonical commutator-relation.5 There holds for the
position and momentum operators �� and � �� �

���
� � � �� � � �� �

3 By physical properties we understand properties, which assume numerical values by measurement.
4 This ontology was developed by L. de Broglie and D. Bohm by adding further structure to quantum physics.
5 Note that the representation of the momentum-operator in x-space is a consequence of the canonical commutator relationship 
and vice versa. 
6 For a pair of self-adjoint operators ��� the commutator is ��� � �� � ���
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(4)

So far we have seen that we can think of physical reality in Galilean space-time as 
being a set of measurement outcomes lying on simultaneity slices �� at different times 
�. Galilean space-time allows us now to look into the past and into the future and to 
think of reality at different (absolute) times. How are these slices connected? It is not 
possible to think of (expectation) values of matter-entities as a flow in space-time. 
The violation of the Leggett-Garg inequalities �� either demands that at time � there 
might be no value at all and/or that a measurement changes the future development. 
There is no flow if “nobody looks“. What we realize by this is that different observers 
might give different accounts of the world. Consistency ensures that, if they interact at 
some time ��, then they agree on the immediate findings � . Measurement has 
another consequence. By reducing information available before measurement it seems 
to run counter to the second law. A way to balance the entropy account is to agree that 
a measurement induces a corresponding dissipation of entropy to the environment
����� . This mechanism will be important later.

Let us now assume that at time �� an observer starts a number of position-
measurements on a set of independent (i.e. non-interacting) matter-entities. We know 
that at some time in the future the observer will find a position for each of them. But 
when will this be the case? Equation (3) just says that within some time �� � � an 
individual apparatus-matter system will develop like

���� ��� �� � ��
�

����� � ���� �� �
(5)

and
�� �� � ��

Let us follow �� and define a self-adjoint operator �� on the matter-apparatus 
system by

�� � ���� ����

�

�
(6)

The operator �� has two eigenvalues � � ��� , � denoting “measurement completed”
and � standing for “measurement incomplete,” i.e.

����� � ��� � ��� � ��� � ����

Therefore, at any time�� � � � �, the expression

� � � �� �� ��

represents the probability for the measurement to be completed. By construction there 
holds � � � �. So there is, right in the spirit of quantum physics, a probabilistic
answer to the question “after what period of time is the position measurement 
complete”. The probability � � does not resolve the conundrum what actually 
happens at a measurement. What it does, is to indicate to an observer with what 
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probability there is a result after an interval �� � �� � . 7 Under this regime the 
observer at �� cannot know which of the matter-entities will have8 a position prior to, 
later than or simultaneous with the others. The future has no predictable time-order 
and it is difficult to define a notion of duration at all, since the observer could repeat 
the procedure and for each trial get different time-intervals. Could we compress the 
time � to an arbitrarily small interval? A theorem by N. Margolus and L. Levitin 
shows that this is only possible under condition of a correspondingly large initial 
energy �� . For a Schrödinger evolution (2) the minimal time �, until �� reaches an 
orthogonal state � � is bounded below by

� �
�

� � � ��

(7)

with
� � �� �� �� �

�� denotes the lowest eigenvalue of ��. The probabilistic nature of occurrence in time 
is perfectly aligned with the general probabilistic nature of quantum physics as a 
theory of matter. In order to define clocks, however, one has to ensure that a 
second ”today” is a second “tomorrow” and hence to respect the minimal time 
interval �. If we demand in the sequel that a measurement (5) produces a result with 
certainty, we will talk of “occurrence-certainty“ and mean that it takes time �� � �

such that � � � �. There is a practical impossibility by (7) to compress the period 
until occurrence-certainty is reached to an arbitrarily small interval.

Non-relativistic quantum physics is formulated on the background of Galilean space-
time and eo ipso the momentum operator is unbounded. The lack of trajectories does 
not allow the definition of a classical velocity for a single system.9 It can however be 
defined on the level of expectation values and then appears for instance as the group 
velocity of a wave-packet. Still, we find in every single experiment that no quantum 
system, prepared at one position in space, can be detected at another position in a 
period shorter than it would take it to move there at the speed of light and the speed of 
light is independent of the velocity of its source. If quantum physics is the 
fundamental theory of matter, then we should be able to explain these facts in terms of 
the theory. Relativity is a classical theory but the findings of the experiments above
evidently do not only hold for macroscopic matter-entities. Because of its crucial
importance in quantum physics, they might then hinge on the appropriate definition of 
an observer who asks the right question.

7 Note that the time-span �� calculated in (5) is a relational quantitiy in the sense of �� , whereas the time-point � of collapse is 
not and rather qualifies as a gauge-quantity.
8 We cannot go into the subtle question, whether a matter-entitiy actually has a position or is just found to be somewhere relative 
to the observer.
9 The velocities, defined by the additional structure of the de Broglie Bohm theory, are also unbounded.
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Our general discussion above indicates that in non-relativistic quantum physics a 
measurement cannot happen within an arbitrarily short period of time, if it should 
produce a result with certainty. By (7) a measurement takes a minimal amount of time 
�, defined by

� �
�

��� � ���
�

(8)

As tacitly assumed all the time, what’s been measured is position in space. The 
average energy � depends upon a matter-entity with wave function �� and the 
interaction Hamiltonian �� with an apparatus �, leaving � ����� very case-
dependent.
Let us introduce a universal observer, namely the environment �, with an average 
(equilibrium) temperature �, in which the matter-entity and the apparatus are 
embedded. As indicated before, each measurement lowers the (von Neumann) entropy 
��� of the reduced matter-apparatus system to zero and must therefore trigger an 
increase of entropy in the environment of (at least) the same amount. This mechanism 
can be explained by the erasure of a former apparatus-state ����� . As a result there 
is dissipation of an average amount of energy

� � ������
(9)

into the environment, where �� denotes the Boltzmann constant �� .10 For the 
average energy of the dissipation Hamiltonian of the total system, �������, we have, 
with �� denoting the initial environment-sate,

� � �� �� �� � ���� ���� � ������ �

Let us denote the density matrix of the reduced matter-apparatus system by ���.
There holds for the von Neumann-entropy

��� � ��� ������� ��� �

In other words the flow of the Hamiltonian ������� on the total system generates 
the same time-scale as the Hamiltonian ����

� �������� ��� �does on the reduced 

matter-apparatus system.11 Let us denote by �
�

��� the lowest eigenvalue of
����� ��� . By (7) the environment state �� moves into an orthogonal state �� in an 
amount of time �

� �
�

�������� � ��
����

�
(10)

10 In the present context the temperature � is best being thought of as the average energy per bit of information, defined by 
��� �

��

��
.

11 This is a link to the concept of thermal time �� �
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Ultimately, the fact that the matter-apparatus system is in some position-state ���� is
reflected in the thermal degrees of the environment and it takes at least the time-
amount � in (10) until the environment, i.e. the universal observer, has unambiguously 
noticed this fact.

Let�� denote a matter-entity, which is isotropically emitted at the origin, i.e. only 
depends on the distance r from the origin.12 We will work for simplicity reason in one 
space-dimension. Given an interval ��� , � � ��, we denote by �� the
multiplication with the characteristic function � ��� and by ��� the one with � ��� .
There is an orthogonal decomposition of � into

� � ��� � ��
�� � �� � ��

�
�

These projectors represent a self-adjoint operator standing for the question whether 
the matter-entity is within the range ��� or not. The corresponding density matrix is

�� �

��
�
��

�

�

�

� ��
� �
��

�

�

�

(11)

For the entropy ���
we have

���
� � � �

��

�

�

���� � �
��

�

�

� � �
��

�

�

���� � �
��

�

�

� � � �
��

�

�

��

(12)

In addition

�
�

��
� ��� ����� ��

�
��

�

�

������ ��
� �
��

�

�

�

Let us further assume that � is a Gaussian wave-packet with mean wave number 
� � � and variance ���

� � �
���

�
��� �

��

�
�� ��� ��� �

(13)

12 In particular there is no angular-momentum.
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If a detector is able to detect � within the interval ��� , then, if it is detected at all, 
its maximum range is �. By (10) it takes a minimal amount of time

� �
�

��������
� �

�

���
�

for the measurement to be complete. Therefore we can define for � � � a classical
average velocity �� and get the estimate

�� �
��

��
�
��

�
�
����

�
����

� �
�

��� � ��
(14)

To estimate the right side of (14) we introduce the error function

��� � �
�

�
���

�
�� �

�

�

(15)

We write with (12)

���� � ��
��� � � �

�

��
�� ��� ��� � �

�

���� ��� � � ��� ��
�

��
� ��� �

There holds ������� ��� � ������� ��� � �� �� and, since the parameter ��
only appears in the argument, the maximum �� of � over �����exists and is 
independent of �� � �� We therefore get

�� �
����

�

��

��
�

(16)

We make use of the de Broglie relation � � �� and write ��� � �� to get

�� �
���

��
����

(17)

The expression ����
� �

�

��� � � covariant and hence �� invariant under Galilean-
boosts, since substitution in (12) will leave the volume-element invariant �� � ���

We now want to show that a refinement of �� generates indeed an estimate, which 
is consistent with empirical findings. Assume that the environment is filled with
(blackbody) radiation. In the classical limit, �� � ���, the average energy of an
oscillator with mode � is indeed �� � ���, as used in �� � More generally we get 
with Planck’s second radiation law 

13 This can be seen e.g. from de l’Hôpital’s rule.
14 A calculation shows that �� � �����
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�� �
��

�
�

��

��� ��
���

� �

��
(18)

The modes with �� � ��� are excited with certainty whereas the higher energies 
have small probabilities and therefore (9) is a good lower approximation to the 
dissipated average energy ���

��� � �. For a given �� there is a frequency �� such 
that

�� �
���

�
. (19)

If the temperature � is small enough, we have � � ���
���and hence

�� �
���

��
��� �

(20)

Assuming in the final step that the environment is a vacuum by letting � � �, where a 
free particle in form of a Gaussian wave packet � can realistically exist, there finally 
results from (18), (19) and (20)

�� � ����� (21)

The right hand side of �� is indeed invariant under Galilean-boosts.15

We have shown that, if we let a radiating environment act as a universal observer in 
the sense that it notices with certainty that a position has been measured, then it is 
possible to define an average velocity of free, massive (� � �) particles and to find a 
boost-invariant upper bound for this velocity in vacuum. If the universal observer did 
physics, it would be able to derive the Minkowski structure of space-time. The 
question is, whether there is more evidence for Minkowski space-time, hidden in 
quantum physics. Indeed, we find further evidence, if we come back to the canonical 
commutator-relation � � The canonical commutator-relation symbolizes in point of 
fact the time � �limit of the difference of two measurements, done in reverse order,
one a little earlier at �� and the other a little later at ��

�� ����
�

���
� � �

�������
��

�

���
��� �� �� � �� ��

�

���
� �� �� .

(22)

In light of the above, the time delta of two definite outcomes � �� � �� can no 
longer be made arbitrarily small without either increasing the probability that no 
measurement is completed at all or the assumption of an arbitrarily large interaction-
energy. The commutator-relation (4) appears under the assumption of occurrence-
certainty as a high energy-limit.

15
���� � ���� � ��
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���

As was shown already in �� and also in ����� , the commutator-relation (4) indeed 
represents the � � � –limit of the brackets of the Poincaré-algebra and not the ones of 
the Galilean-algebra. Denote by �� the generator of time-translations, �� � � � � �

���the generators of spatial translations and �� � � � � � �� the boost-generators in the 
Poincaré-algebra. We outline the derivation following �� . There holds 

�� ��� � �
�

��
������

(23)

The commutator (23) vanishes in the Galilean-algebra where boosts and space-
translations commute. There further holds, with � denoting the mass operator 
� � ��� � �� and � the four-impulse,

�
��
��� � � � �����

�

� � � �
��

���
� � �

�� .

Together with

�
��
�� � �

��
����

we arrive in the � � �- limit at

�� �
�
�

�
��

Defining now the impulse and position operators via �� � ��� and �� � �
�

�
��, we

derive (4)

�� ��� � �
�
�

�
�� ��� � �

�
�

�

�

�
��� �

(24)

The transformations of space-time in this limit are the weakly-relativistic 
transformations, which for � � ����� take the form

�
�
� � � ���� �

�
� � �

���

��
. (25)

These transformations describe a world where there is no time-dilation nor-length 
contraction, but where simultaneity becomes gauge-dependent, if simultaneity is 
defined by synchronizing clocks using signals at speed c. Within some bounded 
region � of space � � � implies that in �� � � �

�. Non-relativistic quantum physics 
has, by postulating the commutator-relation (4) and thereby tacitly assuming
occurrence-certainty and simultaneous measurement, all the time been living in a 
� � �-limit�of a Minkowski world with potentially very large, but finite speed �. This
fact went unnoticed, since the transformations (25) lead to a phase factor for wave 
functions consistent with the one under which the Schrödinger equation is shown to 
be Galilean invariant �� � In addition within � the gauge dependence of simultaneity 
would practically be non-noticeable.
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We have seen, that from the perspective of the universal observer it is possible to 
derive an invariant upper limit for the appropriately defined speed of free matter-
entities in vacuum. This is the key to derive the Minkowski-structure of space-time,
which in turn leads to the canonical commutator-relation (4) as a consequence of the 
Poincaré-algebra, i.e. the non-commutability of space and time-translations. In
addition � �� � �� � � implies the space-time transformations �� � where 
invariant simultaneity-surfaces approximately exists in a bounded region �� Galilean 
space-time with its global simultaneity surfaces is then just the limiting case � � �.

A key feature of the universal observer was occurrence-certainty. If probabilistic 
duration is allowed, then, because of the potentially arbitrarily small time period until 
a measurement result is realized, a kind of suddenness or collapse-like event is 
automatically part of the intuition. From � � � � it does not follow though, that the 
coming-into-being is instantaneous. Therefore the collapse postulate is truly 
independent of the duration-question and has the status of an additional axiom. It 
supports a Galilean structure of space-time.

As discussed, equation (7) can be viewed as the definition of a clock, which flips 
orthogonal states with corresponding period �. In paragraph 3 we chose a specific 
clock, namely light (electromagnetic radiation), in order to measure time intervals.
The derivation of estimate (21) through the universal observer shows that the 
relativistic theory of space-time is naturally connected to the measurement of position 
and time by means of electromagnetism, which mirrors the original intension to 
combine electromagnetism and mechanics. The results also help to illuminate the 
discussion around different choices of clocks ����� .

If Minkowski space-time is a realistic model for the world, then there remains the task 
to formulate quantum physics in a Lorentz-covariant form. Surely, the same 
conclusions as drawn in this paper will apply to the extended theory. If collapse is 
built in, then covariance will fail. What can also be said, given what we know, is that 
the notion of covariant position at some point in time � must be problematic, since 
there can be no instantaneous position-measurement anymore. Concrete extensions
indeed encounter this challenge, as is well known from quantum field theory. By the 
same token we can ask what happens, if the mechanism of a universal electromagnetic 
clock is applied to accelerated observers.
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