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Abstract:  The entangled "Schrodinger's cat state" of a quantum and its 
measurement apparatus is not a paradoxical superposition of states but is 
instead a non-paradoxical superposition of nonlocal coherent correlations 
between states:  An un-decayed nucleus is correlated with a live cat, and a 
decayed nucleus is correlated with a dead cat.  This elucidation of 
entanglement is demonstrated by quantum-theoretical analysis and by 
experiments performed in 1990 using entangled photon pairs.  Thus the cat 
state does not predict a dead-and-alive cat.  Instead of indefinite 
superpositions, it predicts mixtures of definite eigenvalues even though the 
subsystems are not actually in the corresponding eigenstates, a situation that 
implies a (trivial) revision of the standard eigenvalue-eigenstate rule.  
Because the subsystem states are not mixed even though the subsystem 
eigenvalues are mixed, this analysis avoids two common objections to such 
a resolution, namely improper density operators and basis ambiguity.  Thus, 
entanglement transfers coherence from the superposed quantum to 
correlations between the quantum and its measuring apparatus, permitting 
instantaneous collapse without interrupting the global unitary evolution.  
This resolves a key part of the measurement problem.   
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1.  Introduction and background 
 
 This paper presents a suggested resolution of the problem of definite 
outcomes, a key part of the quantum measurement problem.  This introductory 
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section discusses the pertinence and precise nature of the measurement problem, 
von Neumann's well-known ideal measurement scheme, the extent to which 
decoherence resolves the problem, the "Schrodinger's cat state" that results from an 
ideal measurement, and previous analyses of the problem of definite outcomes.   
As we'll see in later sections, clarification of the cat state's properties, especially its 
nonlocal aspects, is key to resolving the problem of outcomes. 
 Although von Neumann first posed the measurement problem in 1932 {1}, 
the issue persists.  Thirty-three participants in a 2013 quantum foundations 
conference responded to a multiple-choice questionnaire as follows:  The 
measurement problem is (a) a pseudo-problem (27 percent agreed), (b) solved by 
decoherence (16 percent), (c) solved or will be solved in another way (39 percent), 
(d) a severe difficulty threatening quantum mechanics (24 percent), (e) none of the 
above (27 percent) {2}.  In 2011, 17 recognized quantum foundations experts 
provided one-page written responses to several questions.  One question was "The 
quantum measurement problem:  serious roadblock or dissolvable pseudo-issue?"  
Nine of the 17 said it's an unsolved roadblock.  Six said it's not a roadblock but 
only a pseudo-issue because quantum physics does not describe reality, it describes 
only our own knowledge of a veiled microscopic world.  Of the remaining two 
experts, one said decoherence solves the measurement problem and the other said 
the many-worlds interpretation solves it {3}.  Summarizing both polls, most 
experts think measurement is a real problem but there's little agreement as to how 
to solve it or whether it's already been solved, and a strong minority think it's not a 
problem because quantum physics is merely "epistemic" (about knowledge) rather 
than "ontological" (about reality).    
 The problem can be compactly and adequately formalized in terms of a 
quantum S whose Hilbert space is spanned by just two orthonormal eigenstates |si> 
(i=1,2) of some observable, in a superposition state  
 

|ψ>S = c1|s1> + c2|s2>      (1) 
  
where |c1|2+|c2|2=1.  "Measurement" is the process of correlating the eigenstates 
|s1> and |s2> with states |a1> and |a2>, respectively, of a macroscopic detection 
apparatus A that is assumed to be describable by quantum physics, so that direct 
macroscopic observation of A can tell us the microscopic state of S.    
 As pointed out in the measurement analyses of Bassi and Ghirardi {4}{5}, 
the simplicity of von Neumann's scheme {1} for an ideal measurement process 
allows one to grasp immediately the difficulties associated with quantum 
measurements.   This scheme supposes that A has a "ready state" |a0> in which A is 
ready to measure S, and that |a0>, |a1>, |a2> are mutually orthogonal.  If the 
measurement interaction is linear (as the Schrodinger evolution certainly is) and 
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does not disturb eigenstates of the measured observable, the initial correlated 
composite state |si>|a0> evolves into the correlated measured state |si>|ai> 
(i=1,2).  Thus the linearity of the evolution guarantees that the superposition (1), 
when measured, evolves into the final correlated state 
 

|ψ>SA = c1|s1>|a1> + c2|s2>|a2>.    (2) 
 
(2) is often called the "post-measurement state," but this term would presume, 
inappropriately, that (2) represents the end of the measurement process.  So I'll call 
(2) the "measurement state" (MS).  Since Schrodinger spoke of entanglement as 
"not one but rather the characteristic feature of quantum mechanics," it's well 
worth noting that the MS is just such an entangled state.    
 The measurement problem is that the state we actually observe at the end of 
such a measurement is not the MS.   Instead, experiment shows that the MS 
"collapses" randomly to one of its two terms.  In other words, the actually observed 
final outcome is the composite-system mixture 
 
    either |s1>|a1> or |s2>|a2>         (3) 
 
whereas the superposition (2) amounts to "both |s1>|a1> and |s2>|a2>."  von 
Neumann and others have dealt with this fundamental inconsistency by simply 
postulating that, somehow, the final state following a realistic, i.e. non-idealized, 
measurement is the collapsed state (3), but then of course the problem becomes 
one of demonstrating consistency between this postulate and the other principles of 
quantum physics.  One would obviously prefer to derive (3) from the other 
quantum principles, especially since (3) appears to contradict the superposition (2).      
 In hopes of maintaining an unambiguous and realistic discussion, I'll often 
phrase my arguments in terms of one or the other of two familiar examples.  The 
first is the double-slit (or beam-splitter) experiment with a single electron (or 
photon) S coming through two slits or a beam-splitter, a "which-path" detector A in 
place at the slits or beam-splitter, and a detection screen or "particle" detectors at 
the far end.   The second example is Schrodinger's much-overworked cat, where S 
is a radioactive nucleus, the |si> are undecayed and decayed states of the nucleus, 
A is a cat attached to vial of poison attached to a hammer attached to a Geiger 
counter at the nucleus, and the |ai> are the alive and dead states of the cat {6}. 
 The "delayed choice" version of the double-slit experiment is especially 
instructive {7}.  When the quantum is in a simple superposition (1) of following 
both paths, repeated trials reveal an interference pattern.  But when the quantum 
correlates with a which-path detector as in (2), the interference pattern instantly 
collapses into an incoherent mixture.  It's a revealing experiment because careful 
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timing and fast switching, one photon at a time, between detection and non-
detection shows that the correlation between S and A causes the collapse, 
implicating the entangled MS directly in the collapse process.   
 As another way of viewing the measurement problem, the MS can be 
thought of as a superposition of the two composite states |bi> = |si>|ai> (i=1,2).  
The MS then becomes the macroscopic superposition  
 
     c1|b1> + c2|b2>          (4)  
 
representing an alive-cat-plus-undecayed-nucleus superposed with a dead-cat-plus-
decayed-nucleus, which is ridiculous because this is not what we would see and it 
cannot be this easy to create such a macroscopic superposition.   Both (2) and (4) 
seem to describe a superposition of both composite outcomes b1 and b2, so there 
appears to be no "definite" (i.e. single) outcome of the measurement.   
 This paper presents a proposed resolution of only this part of the 
measurement problem, namely the problem of definite outcomes.    
 The MS cannot represent the final state of the composite system SA.  It's a 
pure state, which therefor has zero entropy, but the final situation (3) cannot have 
zero entropy because it is a mixture and is irreversibly macroscopically recorded. 
 Decoherence theory {8} sheds considerable light by showing how the 
natural environment can measure a quantum system, transforming superpositions 
into the MS, where the |ai> are now states of the environment.  Decoherence 
occurs when the |ai> are not initially orthogonal, implying that they do not fully 
distinguish between the eigenstates |si>, and a series of system-environment 
interactions then ensues that eventually orthogonalizes the |ai>.  This process 
"decoheres"--removes the interferences and coherence from--the superposition (1).  
Because information about S is now widely and irreversibly dispersed in the 
environment, this process shows how measurements can become irreversible {9}.  
A similar dispersal occurs in the case of measurements by an apparatus rather than 
by the environment, with the many-body apparatus playing the role of the 
environment {9}.  Decoherence also responds to John Bell's complaint:   
 

To restrict quantum mechanics to be exclusively about piddling laboratory 
operations is to betray the great enterprise.  A serious formulation will not 
exclude the big world outside the laboratory {10}. 

 
The environment, by means of the decoherence process, does indeed perform the 
vast majority of quantum measurements throughout the natural universe.    
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 Although decoherence shows how measurements become irreversible and 
universal, it doesn't solve the problem of definite outcomes.  As Stephen Adler puts 
it:   
 

The quantum measurement problem consists in the observation that [the 
MS] is not what is observed as the outcome of a measurement!  What is seen 
is not the superposition of [the MS], but rather either the unit normalized 
state [|s1>|a1>] or the unit normalized state [|s2>|a2>]" (the emphasis is 
Adler's, the square brackets are mine) {11}.   

 
In other words, decoherence simply gets us back to the MS, which still exhibits the 
problem of definite outcomes.   
 The entangled MS is subtle.   It's clearly a superposition but precisely what 
is superposed?  Are dead and alive states of Schrodinger's cat superposed? Is a 
decayed an undecayed nucleus superposed?  The answer to these questions is "no."  
A perhaps surprising feature of the MS that is often, and unaccountably, ignored is 
that neither S nor A is in a superposition.  This is directly provable by assuming S 
or A is in a superposition and deriving a contradiction {12}.  Perhaps, then, the 
entire composite system is superposed.  But this just leads us back to the 
macroscopic superposition (4) which, as noted, is ridiculous.   We will find, in 
Section 2, that there is another way of viewing the superposed MS, and that both 
quantum theory and experiment support this view.    
 The key feature of the MS is entanglement.  Entangled subsystems are 
correlated nonlocally {13}.  In fact, nonlocality is written all over the measurement 
process in general and the double-slit experiment in particular {14}.  With both 
paths available and no which-path detector, repeated trials show an interference 
pattern on downstream detectors, showing each quantum to be in a superposition of 
following both paths--a nonlocalized state.  Furthermore, with both paths available 
and a which-slit detector present at only one path, a non-interfering mixture forms.  
Every measurement trial conforms to this pattern, including those in which the 
quantum follows the undetected path--a nonlocal effect.  It's well known that 
entangled states such as the MS are nonlocal {15}, implying that subsystem 
correlations can be altered instantly across arbitrary distances and in violation of 
John Bell's locality conditions.   
 A photon, electron, or other fundamental quantum is a single thing.  Any 
change in its state must happen simultaneously throughout the quantum's entire 
spatial extent {14}.  Furthermore, two fully entangled quanta, such as an entangled 
photon pair, or an electron and a which-slit detector, act in a similar unified fashion 
{15}.  The same is surely true of any maximally-entangled N-body system:  It is a 
single quantum, just as an isolated electron or photon is a single quantum, only it 
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carries N excitations instead of one.  This unity of the quantum is the source of 
nonlocality.   But despite widespread experimental and theoretical support for a 
nonlocal relationship between a quantum and its measuring apparatus, many 
analyses of quantum measurement pay scant attention to nonlocality.   
 There's a big difference between a simple superposition (1) and a 
superposition (2) of a composite system made of subsystems that can move relative 
to each other.  Serge Haroche advises us that a system should be considered non-
composite whenever the binding between its parts is much stronger than the 
interactions involved in its dynamics {16}.  By this criterion, a system and its 
detector must be considered separate subsystems.  It would be a big mistake to 
consider the MS to be a simple superposition (4), because such an identification 
would miss important physics, namely the nonlocal aspects of the entanglement:  A 
and S can in fact be moved arbitrarily far apart without diminishing the nonlocal 
unity of their correlations.   Thus Schrodinger's cat is not a simple superposition of 
"live-cat-and-undecayed-nucleus" and "dead-cat-and-decayed-nucleus."  The MS 
must be regarded as a state of entanglement between subsystems rather than a 
simple superposition of the composite system SA.     
 The MS is a pure state, not a mixture.  Yet the desired end-point of the 
measurement analysis is the mixture (3).  The strategy of previous measurement 
analyses {17}{18}{19} has been to regard the MS (2) as unacceptable on the 
grounds that it is a pure state that entails indefinite (i.e. superposed) outcomes of 
the apparatus.  These analyses instead argue that the initial state, prior to 
establishing the measurement correlations, should be a mixture of apparatus states 
because of the apparatus' macroscopic nature, and an appropriate choice of this 
initial mixture would then lead to the final mixture (3) of pure states in each of 
which the apparatus shows a definite outcome.   But it then turns out that no such 
initial mixture exists.    
 This paper takes a different tack via a closer look at the MS itself.  It's not 
what it at first appears to be.   
 Section 2 shows that, once its nonlocal features are taken into account, the 
MS is not a paradoxical superposition of subsystem states.  Theory and experiment 
show the MS to instead be a non-paradoxical superposition of nonlocal 
correlations between subsystem states, and the outcomes to indeed be mixtures of 
just the desired sort but mixtures of eigenvalues rather than eigenstates.  Little was 
known about the nonlocal properties of entangled states until 1964 when John Bell 
showed such states permit the instant establishment, across arbitrarily large 
distances, of nonlocal correlations that cannot be explained locally by hidden 
variables or prior common causes {20}.  Aspect and others, whose nonlocality 
experiments can be regarded as experimental investigations of the MS, verified 
experimentally that entangled states indeed violate local realism by establishing 
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distant correlations superluminally {13}.  Section 2 reviews such an experiment 
and the associated theory to show that the MS is not a superposition of states at all, 
but rather a superposition of correlations between states.  
 Section 3 discusses implications for the measurement problem.  In terms of 
Schrodinger's cat, the MS (in which the phase angle between the superposed 
branches is fixed at zero) says simply that an undecayed nucleus is 100% 
positively correlated with an alive cat, and a decayed nucleus is 100% positively 
correlated with a dead cat.  The italicized word "and" indicates the superposition, 
which is not paradoxical.   
 Section 4 summarizes the conclusions. 
 
2.  Nonlocality and measurement 
 
 This section analyzes the MS (2) based on experiment and on quantum 
theory.  It is a superposition, but precisely what is superposed?  The MS is prone to 
many misconceptions, for example the misconception, discussed in Section 1, that 
it describes a superposition of either subsystem A (e.g. a cat) or subsystem S (e.g. a 
nucleus).  As an entangled state, it violates Bell's inequality and has nonlocal 
aspects {15}.  Does this nonlocality have anything to do with the measurement 
problem?    
 We'll see, in fact, that the nonlocal aspects of the MS are key to 
understanding the measurement problem.  To understand these aspects, there is no 
need for either subsystem to be macroscopic.  Microscopic experiments involving 
pairs of photons entangled in the MS (2) have been performed for decades, with 
Aspect's experiment {13} a characteristic and leading example.  Such experiments 
turn out to be quite relevant to the measurement problem.    
 There is in fact at least one beam splitter experiment that strikingly 
highlights the nonlocal relationship between a quantum and its detector.  In 1991, 
Zou, Wang, and Mandel {21} performed an experiment employing entangled 
photon pairs in which one photon goes through a beam splitter while its entangled 
partner acts as a distant detector for the first photon.  The first photon passes 
through the beam splitter and impacts a detector, while the second photon flies to a 
distant location.  The ingenious geometry of these paths entails that, by either (1) 
inserting or (2) not inserting a barrier along one of the second photon's two 
superposed paths, this second photon either (1) detects or (2) doesn't detect, 
respectively, the path of the first photon.  So the second photon acts as an optional 
which-path detector for the distant first photon.  As expected, on those trials in 
which the barrier is inserted in the second photon's path, the first photon impacts 
the screen in a mixture of definitely coming through one or the other slit, and on 
those trials in which the barrier is not inserted, the first photon impacts the screen 
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in an interference pattern implying an indefinite superposition of coming through 
both slits.  This is astonishingly nonlocal.  The first photon could be sent into 
space, and the decision to insert or not insert the second photon's barrier made on 
Earth when the first photon was halfway to the next star, yet the first photon would 
presumably jump between mixture and superposition depending on whether the 
second photon could or could not perform a which-slit detection, i.e. depending on 
whether the two photons were nonlocally entangled or not entangled.   
 Experiments conducted in 1990 by Rarity and Tapster {22} and concurrently 
by Ou, Zou, Wang, and Mandel {23} reveal the true nature of the MS.   These 
"RTO" (for Rarity, Tapster, and Ou) experiments involve paired photons whose 
phases and momenta are entangled in the MS.  For pedagogical discussions of 
these experiments, see {24} and {25}.  Microscopic subsystems S and A are 
essential for our analysis of the MS.  With a macroscopic which-path detector, the 
phase relations and correlations between S and A are frozen:  |s1> is 100 percent 
positively correlated with |a1>, and |s2> is 100 percent positively correlated with 
|a2>, with no possibility of variation and thus no opportunity to observe 
interference.  Phase variations over repeated trials are needed to create interference 
effects and thus to understand which entities are superposed.  
 RTO's photon pairs are entangled in the MS with c1 = c2 = 1/√2.  In each 
trial, a central source creates two entangled photons S and A by parametric down-
conversion.  Each pair is emitted into two superposed branches, shown in Figure 1 
as a solid line and a dashed line.  Note carefully that the solid correlation S1-A1 is 
superposed with the dashed correlation S2-A2.  This superposition of two branches, 
each branch representing a correlation between a state of S and a state of A, is the 
essence of the MS.  Thus S is emitted into two beams (dashed and solid) and so is 
A, and the beams are entangled in the MS (2).  To observe interference, one beam 
of S is phase-shifted through φS (see Figure 1) and one beam of A is phase-shifted 
through φA.  S's and A's two beams are overlapped at beam splitters and monitored 
by photon detectors S1, S2, A1, A2 as shown.  
 Without entanglement, the set-up would be simply two beam splitter 
interference experiments, with each photon emerging in two superposed beams that 
interfere at separate detectors at phase shifts φS and φA respectively.  The detectors 
would observe each photon interfering with itself.    
 Entanglement changes everything:  Even though the detectors might be 
separated widely, the entangled MS entails that each photon acts as an ideal 
which-path detector for the other photon.  Entanglement collapses, or "measures," 
both single-photon superpositions, so that S and A impact their detectors randomly 
with no phase-shift dependence.  In the RTO experiment, we see quite clearly the 
causal connections between entanglement, measurement, and collapse from 
superposition to mixture.   



Hobson	 Resolving	the	problem	of	definite	outcomes	of	measurements	 	 9	

 
Figure 1.  The RTO experiments.  In each trial, the source emits entangled photons 
A and S into a superposition of solid and dashed paths to create the entangled MS.  
The set-up can be viewed as a double double-slit experiment with each photon 
going into two superposed paths (solid and dashed) with one path phase-shifted.  
Mirrors M and beam splitters BS recombine the beams so they can interfere.  
Without entanglement, each photon would coherently interfere as a function of its 
own phase shift.  Entanglement destroys this interference, so each photon exhibits 
an incoherent mixture of eigenvalues while remaining in the coherent MS.  
  
 This collapsed, or mixed, outcome of both subsystems, caused by the 
entanglement, is precisely what the reduced density operators for both subsystems 
predict.  It's a standard theorem {8} of quantum physics that, when a composite 
system is in an entangled pure state, all expectation values for either subsystem 
alone can be extracted from the reduced density operators.  For the case of the MS 
(2), these reduced density operators are  

 
ρS = TrA(ρSA) =  |s1> |c1|2 <s1| + |s2> |c2|2 <s2|,   (5a) 

 
ρA = TrS(ρSA) =  |a1> |c1|2 <a1| + |a2> |c2|2 <a2|,   (5b) 

 
where ρSA  is the density operator |ψ>SA SA<ψ| formed from the MS.  Thus, when 
the photons are entangled in the MS, each photon exhibits a mixture of definite 
outcomes with no sign of superposition or interference.  Note the agreement 
between the theoretical reduced density operators and experiment.  
  Thus the outcomes observed separately or "locally" at each subsystem 
are mixtures, not superpositions.  But we must be careful:  S and A are not in the 
states (5), because S and A are actually in the global MS.   
 Nevertheless, (5) predicts all measurement statistics for S and A separately.  
That is, (5) predicts what a local observer observes, and what RTO observe in their 
experiment, even though (5) doesn't predict the actual pure state (2) that a global 
observer would detect, because the global observer would detect S-A correlations 
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of which local observers are unaware.  To put it another way, the locally-observed 
outcomes or values are mixed, but the globally-observed state is not a mixture, it is 
a pure state. 
 This implies that Schrodinger's cat is either alive or dead, not both, even 
though the global state is the pure entangled state (2).  The outcome of a 
measurement is not some abstract state in Hilbert space but rather an eigenvalue--a 
number or property such as "alive" or "dead."  The "local states" (5) correctly 
predict the eigenvalues--the observed local outcomes--exhibited by S and A when 
the state (2) obtains.  Because neither subsystem is actually in the mixture (5), 
these reduced density operators are called "improper mixtures."  
 Thus, standard quantum theory predicts that S and A exhibit mixtures rather 
than superpositions, but mixtures of eigenvalues not mixtures of states.  John Bell 
famously disagreed with such a replacement of both/and by either/or:    
 

The idea that elimination of coherence, in one way or another, implies the 
replacement of "and" by "or," is a very common one among solvers of the 
"measurement problem."  It has always puzzled me {10}.   

 
Contrary to Bell, the RTO experiment demonstrates that the "and" of a 
superposition does indeed get replaced by the "or" of an improper mixture when a 
superposed quantum loses coherence by becoming entangled with another 
quantum.   
 But quantum dynamics is unitary, implying that the global MS remains 
coherent despite the incoherence of its local subsystems.  Where has the coherence 
gone?  The answer:  It resides in the coherent relationship between Figure 1's solid 
and dashed MS branches!  This global coherence is observed experimentally in 
coincidence measurements comparing the impact points of entangled pairs.  
Quantum theory predicts, and the RTO measurements confirm, that the degree of 
correlation between paired photons S and A varies coherently as the cosine of the 
difference φS-φA between the two local phase shifts, as graphed in Figure 2.  In 
Figure 2, perfect correlation (+1) means the photon detectors always agree:  Either 
both register state 1 or both register state 2.  Perfect anti-correlation (-1) means the 
detectors always disagree:  If one registers state 1, the other registers state 2.  In 
either case, the outcome at S is predictable from the outcome at A.  Zero correlation 
means the detectors agree on a random 50 percent of trials, and disagree on 50 
percent, so the outcome at S is not at all predictable from the outcome at A.   Other 
degrees of correlation represent intermediate situations; for example, a correlation 
of +0.5 implies a 75 percent probability of agreement, while a correlation of -0.5 
implies a 75 percent probability of disagreement.   
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Figure 2.  Nonlocal interference of the coherent correlations between the entangled 
photons of the RTO experiments.  As the nonlocal phase difference (φS - φA) varies, 
the degree of correlation shows coherent interference.    
 
 In the equivalent entangled double-double-slit experiment with two screens, 
each photon "knows" the impact point (equivalently, the phase shift) of the other 
photon and instantaneously adjusts its own impact point in order to form an 
interference pattern as a function of the difference between the two photons' phase 
shifts!  This seems strikingly nonlocal, and indeed the outcomes violate Bell's 
inequality.   
 What is the source of the interference demonstrated by Figure 2, i.e. what 
entities are interfering?  Quantum physics predicts the following probabilities for 
the four possible correlated pairs of outcomes of the RTO experiment {24}: 
 
 P(A1, S1) = P(A2, S2) = 1/4 [1 + cos(φS - φA + w)]      (6a) 
 
 P(A1, S2) = P(A2, S1) = 1/4 [1 - cos(φS - φA + w)]      (6b) 
 
where	 the	 phase	 angle	 w	 is	 determined	 by	 fixed	 parameters	 of	 the	
experimental	 setup	 in	Figure	1,	namely	 the	phase	 shifts	upon	 reflection	and	
transmission	at	beam	splitters,	and	the	fixed	(with	both	phase	shifters	set	at	
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zero)	path	lengths	for	the	two	photons;	in	Figure	2,		w	has	been	set	to	zero	by	
an	appropriate	choice	of	origin	for	the	nonlocal	phase	difference	φS - φA.		
	 With w=0, the probability that measurements of A and S will yield the same 
eigenvalues (either both 1 or both 2) is	
 
 P(same) = P(A1, S1) + P(A2, S2) = 1/2 [1 + cos(φS - φA)]     (7a) 
 
while the probability that the two values will be different is  
 
 P(diff) =  P(A1, S2) + P(A2, S1) = 1/2 [1 - cos(φS - φA)].      (7b) 

 Thus quantum physics predicts the degree of correlation, defined as C = 
P(same) - P(diff), is simply cos(φS - φA), as graphed in Figure 2.  When the two 
photons are in phase with each other (φS - φA = 0), their correlations (S1-A1 and 
S2-A2) reinforce each other positively (C = +1); when the photons are exactly out 
of phase with each other (φS - φA = π), their correlations reinforce each other 
negatively (C = -1); and when they are 90-degrees out of phase with each other (φS 
- φA = π/2), their correlations cancel out (C = 0).  Clearly, the interference is 
between the A1-S1 correlation (the solid line in Figure 1) and the A2-S2 
correlation (the dashed line).   
 Thus the MS is a nonlocal coherent superposition of correlations.  The 
superposition is nonlocal because, as in all interference phenomena, alteration of 
the phase of either branch instantly changes the interference pattern, and such 
alterations can be made at either of the arbitrarily-distant local sites A or S.  But 
since it's an interference not of states but only of correlations between states, 
neither a local observer of A nor a local observer of S can detect it; global data, 
gathered from both A and S, is required to detect changes of correlations and thus 
detect the interference.  So nonlocality cannot be used to send superluminal 
signals.  Nature's tactic here is ingenious:  She must be nonlocal in order to 
preserve the unity or "coherence" of the spatially extended "bi-quantum" (pair of 
entangled photons), yet she must not violate relativistic causality.  Thus she 
accomplishes nonlocality entirely by means of correlations.  
 As verification that the interference cannot be observed locally, we calculate 
from (5) that P(A1) = P(A1, S1) + P(A1, S2) = 1/2, and similarly P(A2) = P(S1) = 
P(S2) = 1/2.  Thus the local states at A and at S are phase-independent mixtures, as 
predicted by (5); if this were not the case, instant messages could be sent.   The 2-
photon correlations, however, depend on both local phases, as can be seen directly 
from Figure 1:  For example, if we use the phase shifter φS to add a quarter 
wavelength to the length of the solid branch of the global superposition in Figure 1, 
we shift the phase relation between detectors A1 and S1 by 90 degrees.  This could 
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for example shift the degree of correlation C (Figure 2) between the two photons 
from +1 to 0--from perfectly correlated to entirely uncorrelated.   
 Such instantaneous nonlocal phase shifts demonstrate the unity of the 
quantum, in this case the unity of the entangled spatially extended photon pair:  An 
action at one end of the entangled state shown in Figure 1 instantly affects the 
physical situation at the other end (says Bell's inequality). 
 Thus the "+" sign in the MS (2) represents neither a superposition of states 
of S nor a superposition of states of A nor a superposition of states of the composite 
system SA.  Nature must prohibit nonlocal alteration of states because this would 
permit instantaneous signaling.  The MS entails only that the outcome s1 is 
coherently correlated with the outcome a1, and the outcome s2 is coherently 
correlated with the outcome a2.  This is a superposition, but it is non-paradoxical 
and agrees with observation.  Entangling the state (1) with the detector transforms 
the coherence of the states of S into the coherence of the correlations between S 
and A, allowing S and A to exhibit definite outcomes while preserving global 
coherence as demanded by unitary evolution.  This is how nature resolves the 
problem of outcomes.  
 This analysis shows local observations must reveal phase-independent 
mixtures of definite outcomes, rather than a phase-dependent superposition, 
because of Einstein's prohibition on superluminal signaling.  The coherence of the 
MS must be invisible to local observers, and yet show up in the global MS in order 
to preserve the unitary dynamics.  The collapse from a superposition (1) of S to 
local states  (mixtures) of the subsystems S and A is a consequence of the MS's 
nonlocality (an implication of the unity of the quantum) plus special relativity's ban 
on instant signaling.   
 
3.  Discussion  
 
 This section discusses the extent to which the results of Section 2 resolve the 
measurement problem, the relation of this analysis to previous analyses such as the 
modal interpretation, and two frequent objections to analyses of the present sort, 
namely improper mixtures and basis ambiguity.   
 Understanding the MS as a superposition of correlations rather than a 
superposition of states resolves the problem of definite outcomes.   Even though S 
and A are in a pure state, namely the MS, A itself exhibits an indeterminate mixture 
of either eigenvalue a1 or a2, implying that S exhibits either eigenvalue s1 or s2.  
Thus Schrodinger's cat is either alive or dead, and the nucleus is, correspondingly, 
either undecayed or decayed.    
 But this conclusion does not entirely solve the measurement problem 
because both subsystems remain in the MS.  How does one get from the reversible 
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superposition of correlations pictured by the solid and dashed lines in Figure 1 to a 
single irreversible outcome, namely either the solid line or the dashed line?   The 
argument surely involves the arbitrarily large separation of A and S, the 
macroscopic nature of the measuring apparatus A, and decoherence, but this paper 
claims only to resolve the problem of definite outcomes and not the full 
measurement problem.   
 In 1968, Josef Jauch noted that the reduced density operators (5) appear to 
offer just the right resolution of the measurement problem {26}.  At least one other 
published report {27} has made the same point.  Quoting Jauch regarding (5),  
 

"We see that both states have become mixtures.  ...There is no question of 
any superposition here.  ...Moreover, we have a measurement since the 
events in [A] and in [S] are correlated."  
 

 However, Jauch got it slightly wrong in saying that "both states have 
become mixtures" because the state of both A and S remains the pure MS, not the 
mixtures (5).   It is straightforward to show {8} that the reduced density operators 
(5) give correct expectation values for any observable of either subsystem, but it is 
a mistake to conclude that either subsystem is actually in the state shown in (5).  
The states (5) are mixtures, and neither subsystem is in a mixture.  The correct 
statement is that (5) yields the correct measured values for each subsystem, even 
though both subsystems are actually in the pure MS.   That is, the MS does not yet 
imply the mixture (3); it implies, rather, a mixture of eigenvalues:  
 
    either s1 and a1, or s2 and a2.         (8) 
 
This is not the desired final state of affairs (3), since all we can say about the state 
at this point of the argument is that it is the pure entangled MS.  Getting from the 
observed eigenvalues (8) to the eigenstates (3) must involve irreversibility, for (3) 
is trully a mixed state (which, unlike a pure state, has an entropy greater than zero), 
rather than a mixture of observed eigenvalues.  
 The distinction between (3) and (8) entails a small change in one standard 
quantum principle.  The "eigenvalue-eigenstate link" (ee link) says that a system 
exhibits a definite eigenvalue if and only if it is in the corresponding eigenstate 
{28}.  The preceding analysis shows we must drop the "only if" part, because the 
measurement yields definite eigenvalues even though S and A are not in eigenstates 
but rather in the MS.  This is a trivial revision that neither alters nor contradicts 
other quantum principles or experiments {8}. 
 This resolution of the problem of definite outcomes has much in common 
with the "modal interpretations" of quantum physics {29}{30}{31}.  In fact,  
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"the central idea of the modal interpretation is to interpret the mathematical 
state that quantum mechanics associates with a physical system in terms of 
properties possessed by that system {29},"  

 
and we've seen that such an interpretation in terms of properties (values, 
eigenvalues) rather than states is crucial in understanding the mixtures (5).  Modal 
interpretations are motivated by a property of Hilbert space called the Schmidt bi-
orthogonal decomposition theorem.  This says that, for any vector |ψ>	in a tensor-
product Hilbert space formed from two N-dimensional subspaces S and A, there 
exist orthogonal bases {|sk>} and {|ak>} for S and A such that	|ψ>	takes the form  
 

|ψ> = Σ ck |sk> |ak>       (9) 
 
The two basis sets are unique if the |ck| are all different.  Quoting Dieks:  
 

I now propose the following physical interpretation of this formal state.  The 
mathematical state description (9) corresponds to a physical situation in 
which the partial system associated with [S], taken by itself, possesses one of 
the values of the observable associated with the set {|sk>}.	  The probability 
that the kth possible value is actually present is given by |ck|2

 {31}.   
 
 But the MS (2) is a special case (for N=2) of (9).  Thus the modal approach 
postulates, as a new quantum interpretation, the conclusion derived above from 
standard quantum principles.  But this paper's resolution of the problem of definite 
outcomes follows from the standard principles.  It is not a new interpretation, nor 
does it propose significant new postulates (although it alters the ee link).  The 
modal view is often called a "no collapse" interpretation because it rejects von 
Neumann's collapse postulate {1}.  The present paper also rejects the notion that 
collapse needs a special postulate, but it doesn't reject collapse.  Its point is to show 
that collapse, upon measurement, from an indefinite superposition to a mixture of 
definite outcomes follows from the other quantum principles.  
 The mixtures (5) are often rejected on the ground that they are "improper" 
{8}{29}.  "Proper mixtures" describe indeterminate outcomes where the 
uncertainty arises only from human ignorance of the actual state, and are not 
unique to quantum physics.  The same notion arises in thermodynamics where the 
precise classical state is represented by probabilities because humans cannot 
feasibly observe or calculate the precise N-body state.  In fact, we apply ignorance-
based probabilities to a classical situation whenever we describe a flipped coin as 
having a 50-50 chance of coming up heads or tails.   
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  The mixtures (5) are not "proper" because they don't arise from ignorance of 
the state.  The state is the MS.  It's an experimentally-detectable error to suppose 
that A is actually in one of the eigenstates |ai>.  Nevertheless, these mixtures tell us 
correctly what is observed locally at either subsystem:  At A, for example, we 
observe either a1 or a2--e.g. either an alive cat or a dead cat.  Although (5) can be 
easily misinterpreted, there is nothing "improper" about (5).    These mixtures are 
just what we expect when we reduce a known entangled state of two quanta to 
obtain predictions for one quantum, namely mixtures expressing the "either/or" of 
quantum uncertainty.  We don't expect them to express ignorance, because 
quantum uncertainty doesn't arise from ignorance.  So-called "improper mixtures" 
represent the randomness inherent in quantum physics even though there is no 
ignorance, i.e. even though the quantum description is "complete."   
 A better term for (5) is "local states."   The central point of this paper is that 
the definite values predicted by these local states are correct, even though the 
subsystems are not in these states.  Far from being improper, local states are the 
formal expression of the quantum randomness that persists even when we know 
the precise state of a system.  
 A second objection to (5) is "basis ambiguity" {8}.  The  argument is that 
the mixtures (5) are mathematically ambiguous in the degenerate case |c1|2

 = |c2|2
 = 

1/2 because (5) then reduces to ρS = IS /2 and ρA = IA/2 where IS  and IA are 
subspace identity operators.  Thus, (5) would take the same form in any basis.  For 
example, (5a) could be written  
 

ρS = (|r1> <r1| + |r2> <r2|)/2,     (10) 
 
where |r1> = (|s1> + |s2>)/√2 and |r2> = (|s1> - |s2>)/√2.  This seems to imply 
that, immediately following the measurement, S exhibits the properties associated 
with either |r1> or |r2> rather than |s1> or |s2>.  The present analysis avoids this 
criticism because S and A are not claimed to be in the states (5), and (1) and (2) 
define the |si> and |ai> unambiguously.  
 
4.  Conclusions 
 
 When a detector measures a superposed quantum, the unitary Schrodinger 
evolution leads to a pure coherent entangled measurement state (MS) of the 
composite detector-plus-quantum system.  Both quantum theory and experiment 
show the MS entails observed outcomes that are mixtures of definite eigenvalues 
of the quantum and its detector, not indefinite superpositions.  A second argument 
also implies definite outcomes:  The observed local states must contain no hint of 
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the coherent global MS lest relativity's prohibition on instant signaling be violated; 
this implies the observed outcomes must be phase-independent mixtures, not 
superpositions, of eigenvalues.   
 This resolution of the problem of definite outcomes requires that the 
standard "ee link" be revised.  The ee link states that a quantum system exhibits, 
upon measurement, a definite eigenvalue of some observable property if and only 
if it is in an eigenstate of that property.  The words "and only if" must be dropped--
a trivial revision that neither alters nor contradicts other quantum principles or 
experiments.  This revision implies that we cannot conclude, from observation of a 
specific eigenvalue, that the observed quantum is in the corresponding eigenstate.  
The quantum might, for example, be entangled with other quanta.   
 Nonlocal experiments with entangled photons demonstrate the precise nature 
of the coherent global MS:  It is a superposition only of correlations between the 
detector and the detected quantum, not a superposition of states of the detector, or 
states of the quantum, or composite states of both subsystems.  It should be read as 
"the quantum's first eigenvalue is coherently correlated with the detector's first 
eigenvalue and the quantum's second eigenvalue is coherently correlated with the 
detector's second eigenvalue."  This coherent superposition is non-paradoxical.  It's 
by this shifting of coherence from the superposition state of the quantum to 
coherent correlations between the quantum and its detector that the composite 
system's global evolution can remain unitary while both local states collapse, upon 
entanglement, into incoherent mixtures.  This is the way nature achieves definite 
but indeterminate outcomes while preserving unitary evolution.   
 Thus quantum physics predicts Schrodinger's cat is either dead or alive, not 
both.  This analysis resolves the problem of outcomes, a key part of the 
measurement problem, but it does not entirely resolve the measurement problem 
because the MS remains a coherent pure state superposition of correlations as 
shown in Figure 1.  Hopefully, further analysis will be able to show that this 
superposition collapses into one or the other of its two branches upon interaction 
with a many-body macroscopic environment.    
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