Volume 3, Issue 2, pages 1-28
By treating an electron as its own Electromagnetic (EM) field and generalizing the Lorentz force to be the field force between the electron’s EM field and its external EM field, it is proved that the radiating field and the Coulomb-like field of an accelerated electron do interact, with the radiating field provides the exact momentum change needed by the Coulomb-like field. Thus, the radiating field of an accelerated electron fulfills the role of virtual photon in Quantum Electrodynamics (QED). By treating the radiating field as virtual photon, it is closely examined how the virtual photon is emitted and absorbed by the electron, and how the condition which leads to infinity in QED can be removed. Consequently, the necessity of Renormalization is removed. The conventional formula of the radiation power by an accelerated electron is questioned, and a new formula is given. Two experiments to test the new formula are proposed. When the electron is treated as its own EM field and its location is the center of mass of its EM field, it is explained why an electron does not radiate when it free-falls under the gravity.