Volume 5, Issue 2, pages 16-50
Edward J. Gillis [Show Biography]
The assumption that wave function collapse is a real occurrence has very interesting consequences – both experimental and theoretical. Besides predicting observable deviations from linear evolution, it implies that these deviations must originate in nondeterministic effects at the elementary level in order to prevent superluminal signaling, as demonstrated by Gisin. This lack of determinism implies that information cannot be instantiated in a reproducible form in isolated microsystems (as illustrated by the No-cloning theorem). By stipulating that information is a reproducible and referential property of physical systems, one can formulate the no-signaling principle in strictly physical terms as a prohibition of the acquisition of information about spacelike-separated occurrences. This formulation provides a new perspective on the relationship between relativity and spacetime structure, and it imposes tight constraints on the way in which collapse effects are induced. These constraints indicate that wave function collapse results from (presumably small) nondeterministic deviations from linear evolution associated with nonlocally entangling interactions. This hypothesis can be formalized in a stochastic collapse equation and used to assess the feasibility of testing for collapse effects.
Full Text Download (336k)